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Abstract

This paper examines the behavior of postwar real U.S. GNP, the inputs to an aggregate production

function, and the associated Solow residuals for the presence of nonlinearities in their generating

mechanisms. To test for nonlinearity, we implement three di®erent statistical tests: the McLeod-Li

test based on the correlogram of the squared data, the BDS test based on the correlation integral,

and the Hinich bicovariance test based on the third-order moments of the data.

We ¯nd substantial evidence that the generating mechanism of real GNP growth is nonlinear,

but no evidence for nonlinearity in the Solow residual generated under alternative assumptions. We

further ¯nd that the generating mechanism of the labor input series (expressed as hours worked) is

nonlinear whereas that of the capital services input (expressed several ways) appears to be linear.

We conclude that the source of the nonlinearity in real output is in the labor markets rather than

in exogenous technology shocks. Finally, we examine the behavior of simulated factor input series

from an asymmetric adjustment model to determine whether asymmetric adjustment costs are the

source of the observed nonlinearities in the labor input.

JEL primary ¯eld: C22
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1 Introduction

A recent strand of the macroeconomics literature seeks to explain the behavior of key economic

series in terms of nonlinear time series models. Notable among these analyses is Neft»ci (1984),

who models asymmetries in the cyclical behavior of the U.S. unemployment rate using a discrete

Markov process. Other examples include Stock (1987) and Hamilton (1989), who propose nonlinear

statistical models to describe the behavior of such series as output, unemployment, etc., while

Hinich and Patterson (1985), Brock and Sayers (1988), and Ashley and Patterson (1989) test for

nonlinearity in these series directly. Since a number of papers have found that the generating

mechanism for real output is nonlinear and nonlinear in an asymmetric way - e.g., Blatt (1978),

Neft»ci (1984), Hamilton (1989), Ashley and Patterson (1989), and Potter (1995), and our own

results reported below - it is of interest to determine the source of this nonlinearity.

In a related literature, a number of papers have shown the existence of an asymmetric response

of factor demands to exogenous shocks across the business cycle. These results have been obtained

using both aggregate and ¯rm level data for a variety of countries. Notable among these contribu-

tions are the papers by Pfann and Palm (1993), and Palm and Pfann (1997), who use manufacturing

data for the Netherlands, de la Croix, Palm, and Pfann (1996), who use aggregate and sectoral

data for Belgium, France, and the Netherlands, and Pfann (1996), who uses manufacturing data

for the U.K. and Netherlands. Hamermesh and Pfann (1996) examine the costs of adjusting the

level of employment and the costs of hiring and ¯ring using turnover data for U.S. manufacturing.
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There are also a number of papers that have considered nonconvex and asymmetric adjustment

cost models using ¯rm-level data, including Pfann and Verspagen (1989), Jarambillo, Schiantarelli,

and Semberelli (1993), Schiantarelli and Sembenelli (1993), and Bresson, Kramarz, and Sevestre

(1993). A comprehensive review of this literature is provided by Hamermesh and Pfann (1996).

In this paper, we model the behavior of real output in terms of an aggregate production function

and test for nonlinear serial dependence in the generating mechanisms for

- real output growth,

- its observable determinants (measures of the labor and capital inputs),

- an exogenous technology shock quanti¯ed by the Solow residual implied by this speci¯cation.

We also examine the behavior of simulated factor demand functions from a model with asymmet-

ric adjustment costs to determine whether the asymmetric response of factor inputs to exogenous

shocks across the business cycle can be used to account for nonlinearities in the generating mecha-

nisms for real output and the factor inputs.

Following Solow's (1957) approach, technology shocks can be measured as the di®erence between

the growth rate of output and the share-weighted growth rates of inputs. We review the conventional

Solow residual approach in Section 2.1. However, this approach has been criticized on a number of

grounds. If, for example, there is cyclical variation in factor utilization rates, then the conventional

Solow residual inappropriately includes a component due to unobserved variation in capital and/or
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1labor utilization rates. Likewise, if there are increasing returns to scale in production or if ¯rms

have substantial market power due to imperfect competition, as argued by Hall (1988, 1990), then

endogenous increases in e±ciency due to scale e®ects or nonlinearity in the generating mechanism

for the markup of price over marginal cost might spuriously cause the generating mechanism of

the conventional Solow residual to appear to be nonlinear. In Section 2.2, we derive alternative

measures of the Solow residual that account for such features.

What is meant by the term \nonlinear generating process" used above? Consider the closed

and bounded metric space, S, of strictly stationary random processes with integer time indices,

zero mean values, and ¯nite higher moments. Let H denote an operator (called a ¯lter) on this

space; the range of the operator is a subset of the space S. If f² g denotes an input process,t

then the output of the ¯lter is denoted x = H(² ) at integer time, t. In the linear case, H is at t

linear, time-invariant, stable ¯lter, and x can be written as a convolution of f² g and an aboslutelyt t

summable sequence fh g, called the ¯lter's impulse response:t

1X
x = h(n)² : (1.1)t t¡n

n=¡1

Next suppose that the ¯lter represents a stable, time-invariant nonlinear operation on the input

process. Just as the output of a linear ¯lter is represented by its impulse response convolved with

the input series, the output of a nonlinear ¯lter that can be expressed as a convergent Volterra

1This is stressed by Abbot, Griliches, and Hausman (1988) and Basu (1996).
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series expansion is completely represented by the multi-order convolution:

1 1 1X X X
x = h + h (n)² + h (m;n)² ²t 0 1 t¡n 2 t¡n t¡m¡n

n=¡1 m=¡1 n=¡1

1 1 1X X X
+ h (k;m; n)² ² ² + ¢ ¢ ¢ ; (1.2)3 t¡n t¡m¡n t¡k¡m¡n

m=¡1 n=¡1k=¡1

where the functions h (n;m; k; : : :) are called the Volterra kernels of the ¯lter. (See Sanberg 1992.)i

The Volterra representation of a process is not always invertible. And not all nonlinear processes

can be expressed as a Volterra series. However, all of the nonlinear processes that are of interest

to economists can so be represented.

A nonlinear ¯lter can be viewed as a device wherein the input to the system alters the ¯lter's

input response weights; i.e., the h(n) values in (1.1) change in response to the input process, f² g.t

That is, for each t and for each non-negative n, the n'th impulse response weight, h(n), is not

constant but is instead a function of ² ; ² ; ² , etc.t¡n t¡n¡1 t¡n¡2

The most familiar examples of nonlinear processes in the economics literature are the ARCH

and GARCH models of Engle (1982) and Bollerslev (1986). These models have proven useful in

modelling the volatility of various ¯nancial time series, such as stock returns. ARCH and GARCH

models belong to that class of stochastic processes called \martingale di®erences," models whose

variates are serially dependent but nevertheless unforecastable.

As macroeconomists, we are typically most interested in those nonlinear models which are not

martingale di®erences. If a member of the non-martingale class of nonlinear processes can be
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regarded as a good approximation for the dynamics of key macroeconomics time series, then the

linear (or log-linear) forecasting/decision rules typically used in modelling expectations formation

in macroeconomic models may be seriously °awed.

An example from Hinich and Patterson (1992) will help to make this point clear. Consider the

following AR(1) model:

y = ay + u ; (jaj < 1); (1.3)t t¡1 t

where u is a stationary white noise series { i.e., u is not serially correlated. The conditionalt t

expectation of y is:t

Efy jy ; y ; ¢ ¢ ¢g = ay ; (1.4)t t¡1 t¡2 t¡1

if and only if

Efu ju ; u ; ¢ ¢ ¢g = 0; (1.5)t t¡1 t¡2

which is to say, if and only if u is a martingale di®erence. Suppose, however, that the error sequencet

u is generated by the quadratic nonlinear process:t

LX
u = ² + a(m)² ² ; (1.6)t t t¡1 t¡m¡1

m=1

where the ² are independently and identically distributed random variables andt

LX
mA(z) = a(m)z (1.7)

m=1

has no zeroes inside the unit circle in the complex plane. This error sequence fu g is not a martingalet
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di®erence, so the conditional expectation of y is not ay , but rather:t t¡1

LX
Efy jy ; y ; ¢ ¢ ¢g = ay + a(m)² ² ; (1.8)t t¡1 t¡2 t¡1 t¡1 t¡m¡1

m=1

where ² ; ² are observable at time t under the restrictions imposed on A(z). It is importantt¡1 t¡2

to note that the error sequence given by (1.6) is serially uncorrelated (white) noise; its serial

dependence will not be detected by the usual diagnostic tests.

This distinction between linear and nonlinear models is also potentially quite consequential

for another reason: statistical inferences based on a structural model for y which is mistakenlyt

speci¯ed to be linear can be seriously °awed. For example, innovations like u in equation (1.3)t

are ordinarily assumed to be at least asymptotically independent, so where u is actually seriallyt

dependent, as in equation (1.6), the usual statistical machinery is invalid.

Below, we test for nonlinearity in the generating mechanisms of U.S. real output, the inputs

to an aggregate production function, and several estimates of the Solow residual. Three statistical

2tests are used:

1. McLeod-Li test [McLeod and Li (1983)]

2. BDS test [Brock, Dechert, and Scheinkman (1996)]

3. Hinich bicovariance test [Hinich (1995), Hinich and Patterson (1995)]

2MS-DOS software implementing these tests is available from the authors as part of a \nonlinearity toolkit."
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The McLeod-Li test is based on the sample correlogram of the square of the data. This test is exam-

ining selected fourth moments of the data; in essence, it is testing for conditional heteroscedasticity

(ARCH) e®ects. The BDS test is based on a nonparametric measure of association between a

time series and its recent past. Originally proposed as a test for deterministic chaos in economic

time series, the BDS test is now typically applied to prewhitened data as a test for serial inde-

pendence. The Hinich bicovariance test systematically examines third moments of the series; it

is a time-domain analogue of the Hinich bispectral test. The Hinich bispectral test and the kinds

of nonlinear generating mechanisms most amenable to detection by third-moment techniques are

described in Hinich (1982), Hinich and Patterson (1985), Ashley, Patterson, and Hinich (1986), and

3Ashley and Patterson (1989). The bicovariance test is used here in view of the small sample sizes

available. Since all of these tests are valid only in large samples { very large samples in the case of

the BDS test { the results presented below are all based on bootstrapped simulations.

These tests are described in more detail in Section 3; the results of applying them to test for

nonlinearity in the generating mechanisms for real output, the input factor series (labor and capital

services), and alternative measures of productivity or Solow residuals are presented in Section 4.

There we are able to conclude that the source of the widely-observed nonlinearities in the generating

mechanism for real output is most likely in the labor markets rather than in exogenous technology
3Third-moment techniques are sensitive to forms of nonlinearity that yield asymmetric time series; testing for

asymmetry per se { as in Mittnik and Niu (1994), Ramsey and Rothman (1996), and Verbrugge (1996) { is beyond

the scope of the present paper, however.
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shocks. In Section 5, we use simulated series on labor, capital, and output based on the decision

rules for a ¯rm with a Cobb-douglas production technology and asymmetric costs of adjustment to

determine if the nonlinearity in the generating mechanism for the labor input can be attributed to

the asymmetric response of labor demand to exogenous shocks.

2 A Framework

The procyclical behavior of measured productivity is one of the key issues in the current macroe-

conomics literature. According to proponents of the real business cycle approach (Prescott 1986)

the observed procyclical movements in productivity are a response to exogenous technology shocks.

In a series of papers, Hall (1988, 1990) has argued that the procyclicality of productivity can be

attributed to imperfect competition and to internal increasing returns to scale in production. In

this case, productivity can be procyclical even in the absence of positive technology shocks: a

demand shock that stimulates output can be associated with increases in productivity by leading

to endogenous increases in e±ciency. Labor hoarding or variable labor utilization rates have been

given as another reason for the procyclical behavior of productivity. Rotemberg and Summers

(1990) present a model with in°exible prices and labor hoarding which generates the procyclical

movements in productivity observed in the data.

In this section, we ¯rst describe the conventional Solow residual framework, which allows us to

treat the residual from an aggregate production function as an observable measure of technology
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shocks. Next we describe various extensions of the basic framework that attempt to account for some

of the alternative factors that have been used to account for the cyclical behavior of productivity.

Finally, we discuss how the tests implemented in this paper can be used to di®erentiate among the

alternative models of cyclical °uctuations.

2.1 The Conventional Solow Residual Framework

Solow (1957) showed that if there are constant returns to scale, all factors are fully variable, and

there is perfect competition in the product and factor markets, then the di®erence between the rate

of growth of output and the share-weighted growth rates of inputs provides an observable measure

of exogenous technological change. To describe his approach, consider a production function for

aggregate output y as a function of capital services S , total hours worked L , and a randomt t t

technology shock z as:t

y = z F (S ;L ): (2.1)t t t t

We initially assume that capital services are proportional to the stock of capital K :t

S = µK : (2.2)t t

Letting p denote the product price and w the wage rate, the assumptions that there are constantt t

returns to scale in production and perfect competition in product markets imply that the growth

rate of real output can be expressed:

¢ ln(y ) = ® ¢ ln(L ) + (1¡ ® )¢ ln(K ) + ¢ ln(z ); (2.3)t t t t t t

9



where ® is the factor share earned by labor (the ratio of compensation w L to total revenue p y )t t t t t

and where we have substituted for S using (2.2). Using (2.3), the Solow residual can be expressedt

as the di®erence between the growth rate of real output and the share-weighted growth rates of the

inputs:

1¢ ln(z ) = ¢ ln(y )¡ ® ¢ ln(L )¡ (1¡ ® )¢ ln(K ): (2.4)t t t t tt

The variable z is indexed by `1' to denote the Solow residual for our benchmark model.t

2.2 Extensions to the Conventional Framework

The ¯rst alternative to the benchmark model relaxes the assumption that capital services are

proportional to the stock of capital. In his original paper, Solow (1957) allowed for the possibility

that capital utilization rates could vary across the business cycle by measuring capital services as

the product of the physical capital stock and the employment rate. Other approaches to adjusting

for variable capital utilization rates include using measures of electricity usage (Jorgenson and

Griliches 1967), the Federal Reserve Board capacity utilization series (Tatom 1980), and shift

data (Shapiro 1986 and Mayshar and Solon 1993). Following the recent practice in Burnside,

Eichenbaum, and Rebelo (1995a,b), we assume that aggregate electricity usage, E , is proportionalt
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4to capital services:

E = ÁS : (2.5)t t

Using the relationship (2.5) yields an alternative expression for the Solow residual as:

2¢ ln(z ) = ¢ ln(y )¡ ® ¢ ln(L )¡ (1¡ ® )¢ ln(E ): (2.6)t t t t tt

A second criticism of the conventional Solow residual framework is that it does not account for

variation in unobserved work e®ort across the business cycle. To show this, suppose total hours

5worked depends on the number of workers employed times their e®ective work e®ort. Letting

N denote the number of workers who are employed and W the level of e®ort expended by ant t

individual, output is assumed to be produced according to the Cobb-Douglas production function:

®1¡®y = z K [fN W ] ; (2.7)t t t tt

where f is the (¯xed) shift length, so that fW denotes total e®ective work e®ort and L = fN .t t t

Proceeding as before, the Solow residual is:

3¢ ln(z ) = ¢ ln(y )¡ ® [¢ ln(N ) + ln(W )]¡ (1¡ ®)¢ ln(K ): (2.8)t t t tt

This expression shows that unmeasured variation in work e®ort enters as an additional determinant

3of observed measures of productivity. The conventional Solow residual is related to ¢ ln(z ) ast

4Our de¯nition of the electricity usage series di®ers from Burnside et al in that we use the monthly index of electric

utility sales to commercial and other users whereas these authors use a monthly index of total electrical power usage

in the industrial sector (manufacturing plus mining plus utility industries).

5Our discussion is based on Burnside, Eichenbaum, and Rebelo (1993).
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follows:

1 3¢ ln(z ) = ¢ ln(z ) + ®¢ ln(W ): (2.9)tt t

3If z is taken to be identical to the \true" technology shock z , then the expression in (2.9) impliestt

that the conventional Solow residual can confound movements in technology with movements in

unobserved work e®ort across the cycle, which itself responds to exogenous \demand shocks," such

as government consumption shocks. Following the approach in Abbott, Griliches, and Hausman

(1988) or Caballero and Lyons (1992), we allow for the e®ects of variable labor utilization by testing

the behavior of average hours worked per worker for potential nonlinearities.

A third criticism stems from the fact that the conventional Solow residual confounds endogenous

changes in e±ency due to the presence of increasing returns in production with exogenous changes

in productivity. Likewise, it does not take into account the existence of market power by ¯rms.

To allow for these features, we use the \cost-based" Solow residual proposed by Hall (1988, 1990).

cLetting r denote the service price of capital and de¯ning ® as the share of labor in total costs,t t

c® ´ w L =(w L + r K ), the cost-based Solow residual can be expressed as:t t t t t tt

4 c c¢ ln(z ) = ¢ ln(y )¡ ° [® ¢ ln(L ) + (1¡ ® )¢ ln(K )] ; (2.10)t t tt t t

where ° denote the returns to scale of the aggregate production function. To see the e®ect of

increasing returns on the measurement of productivity, consider the di®erence:

1 4 c c¢ ln(z ) = ¢ ln(z ) + (° ¡ 1) [® ¢ ln(L ) + (1¡ ® )¢ ln(K )] : (2.11)t tt t t t
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This expression shows that the conventional Solow residual confounds exogenous increases in tech-

nology with endogenous increases in output due to scale e®ects.

The e®ect of imperfect competition on observed measures of productivity can also be demon-

strated using (2.10). Assuming that the product price p contains a markup ¹ over marginal cost, itt

is straightforward to show that the relationship between the revenue and cost shares is °c = ¹s ,Jt Jt

J = K;L. Substituting this relation in (2.10) implies that:

1 4¢ ln(z ) = ¢ ln(z ) + (¹¡ 1) [® ¢ ln(L ) + (1¡ ® )¢ ln(K )] : (2.12)t t t tt t

Under imperfect competition, price exceeds marginal cost. Hence, the conventional Solow resid-

ual misinterprets increases in the value of output relative to increases in the value of inputs as

improvements in technology.

2.3 Implications

When implementing tests of nonlinearity in the generating mechanism for real output, the inputs

of labor and capital, and an observable measure of technology shocks, one can ask (1) what are the

implications of a linear versus nonlinear generating mechanism for a given variable, and (2) what

classes of dynamic macroeconomic models can generate the types of nonlinearities that the tests in

this paper can detect?

In terms of the ¯rst question, if technology shocks have a nonlinear generating mechanism of the

type discussed in the Introduction, then linear time series methods (as in Cochrane (1994)) are not
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useful in quantifying the relative importance of alternative types of shocks in generating cyclical

°uctuations. The reason is that nonlinearities in the generating mechanism for the exogenous

shocks will translate into nonlinear behavior in the observed series; consequently, linear models for

the observed series will be mis-speci¯ed and conclusions based on them unreliable. If the source

of the nonlinearity in the generating mechanism for an endogenous variable such as real output is

found to lie in the propagation mechanism for the exogenous shocks, then explaining the behavior

of cyclical °uctuations requires that we identify the mechanism generating the nonlinearity. Put

di®erently, the dynamic behavior of an economy that contains features leading to nonlinearities in

the behavior of the endogenous series will be distorted when analyzed using the VAR approach

proposed by Sims (1980) or the simple linear (or log-linear) decision rules described, for example,

by Kydland and Prescott (1982).

In response to the second question, consider the simple model of labor hoarding described by

Hall (1990). The technology is constant returns to scale, with y units of output produced for L

units of the labor input, i. e. y = L. However, the response of employment is di®erent in recessions

versus booms. Speci¯cally, in recessions, if output goes down by one unit, employment decreases

by only Á units (Á < 1) because ¯rms ¯nd it costly to ¯re workers in recessions and re-hire them in

booms. This version of the labor hoarding model gives rise to a simple threshold model in which

changes in employment are described by a di®erent model depending on whether changes in output
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are positive or negative, that is,
8
>>>< ¢y if ¢y > 0

¢L = (2.13)>>>: Á¢y if ¢y < 0:

Monte Carlo simulations in Ashley and Patterson (1989) show that the Hinich bispectral test has

considerable power to detect univariate threshold AR models, the analogue of equation (2.13) in

a setting with stochastic dynamics. This kind of asymmetric factor demand also arises in the

asymmetric adjustment cost model considered in Section 5 below.

3 Testing for Nonlinearities

In this section, we provide a brief description of the statistical tests implemented below. These

include a test for ARCH e®ects due to McLeod and Li (1983), the BDS test proposed by Brock,

Dechert, and Scheinkman (1996), and the bicovariance test due to Hinich (1995) and Hinich and

Patterson (1995). These tests all share the same premise: once any linear serial dependence is

removed from the data via a prewhitening model, any remaining serial dependence must be due

to a nonlinear generating mechanism. Thus, each of the three procedures is actually a test of

serial independence applied to the (by construction) serially uncorrelated ¯tting errors of an AR(p)

model for the sample data. This ¯tting error series, standardized to zero mean and unit variance,

is denoted by fx g below.t

The McLeod-Li Test
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This test for ARCH e®ects was proposed by McLeod and Li (1983) based on a suggestion in Granger

and Andersen (1978). It looks at the autocorrelation function of the squares of the prewhitened

2 2data and tests whether corr(x ; x ) is non-zero for some k. The autocorrelation function for thet t¡k

2squared residuals fx g is estimated by:t

T TX X
2 2 2 2 2 2 2r̂ (k) = (x ¡ ¾̂ )(x ¡ ¾̂ ) / (x ¡ ¾̂ ) ; (3.1)xx t t¡k t

t=1t=k+1

where
TX

2 2¾̂ = x =T:t
t=1

¡ ¢2Under the null hypothesis that fx g is an i.i.d process (and assuming that E x exists) McLeodt t

and Li (1983) show that, for ¯xed M :

p
T r̂ ´ (r̂ (1); : : : ; r̂ (M)) (3.2)xx xx xx

is asymptotically a multivariate unit normal. Thus,

MX
? 2Q = T (T + 2) r̂ (i)=(T ¡ i); (3.3)xx xx

i=1

2is asymptotically Â (M) under the null hypothesis of a linear generating mechanism for the data.

The BDS Test

The BDS test is a nonparametric test for serial independence based on the correlation integral of

mthe scalar series, fx g. For embedding dimension m, let fx g denote the sequence of m-historiest t

generated by fx g:t

mx ´ (x ; : : : ; x ):t t+m¡1t
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Then the correlation integral C (²) for a realization of fx g of length T is given by:m;T t

X
m mC (²) = I (x ; x )£ [2=(T (T ¡ 1))]; (3.4)m;T ² m mt s

t<s

m mwhere T = T ¡ (m ¡ 1) and I (x ; x ) is an indicator function which equals one if the supm ² t s

m mnorm kx ¡ x k < ² and equals 0 otherwise. Brock, Dechert, and Scheinkman (1996) exploit thet s

asymptotic normality of C (²) under the null hypothesis that fx g is an i.i.d. process to obtainm;T t

a test statistic which asymptotically converges to a unit normal.

The Hinich Bicovariance Test

This test assumes that fx g is a realization from a third-order stationary stochastic process and testst

for serial independence using the sample bicovariances of the data. The (r; s) sample bicovariance

is de¯ned as:
T¡sX

¡1C (r; s) = (T ¡ s) x x x for 0 · r · s: (3.5)Z3 t t+r t+s
t=1

Under the null hypothesis that fx g is an i.i.d. process, Hinich and Patterson (1995) show that,t

:5for ` < T ,
` s¡1XX

:5 2CH = (T ¡ s) C (r; s); (3.6)3 Z3
s=2 r=1

is asymptotically distributed chi-square with df = (` ¡ 1)`=2 degrees of freedom. Hinich and

:4Patterson (1995) recommend using ` = T since they ¯nd that the power of the test declines for

smaller values of `.
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4 Results

Table 2 reports the results of the Hinich bicovariance test and the McLeod-Li test for real output,

capital, and two labor series; Table 3 reports analogous results using the BDS test. Each entry in

Tables 2 and 3 is the marginal signi¯cance level at which the null hypothesis of a linear generating

mechanism can be rejected, based on 1000 bootstrap replications.

Output is measured using real U.S. GNP; its growth rate is denoted LY below. Two alternative

measures of total hours worked are used: the ¯rst measure is manhours employed per week for all

workers in all industries; the second is total employee-hours in nonagricultural establishments. The

growth rates in these two series are denoted LH1 and LH2 below; these lead to the construction

of two di®erent Solow residual series, denoted SOL1 and SOL2 below, respectively. The quarterly

capital stock series utilized below is constructed using computations similar to those in Christiano

(1988) and Burnside, Eichenbaum, and Rebelo (1995a). Its growth rate (LC) is used in equation

(2.4) but the nonlinearity tests are applied to LCDIF, the change in LC, since the time series

behavior of LC itself (which is constructed as the cumulation of net investment) is dominated by a

unit root. These acronyms and de¯nitions are summarized in Table 1; a more detailed description

of our data sources and methodology can be found in the Appendix.

A time plot of the observable series is given in Figure 1 while the associated Solow residuals

are plotted in Figure 2. As noted in Section 3, all three statistical tests are implemented on

prewhitened data. Each series is prewhitened using an AR(p) model, with the order p chosen to
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6minimize the Schwartz (SC) criterion. Since the sample is not very large, we do not accept these

choices mechanically: we routinely check the nonlinearity test results with alternative AR(p) order

speci¯cations whenever the SC-based model estimates are not clearly satisfactory, so as to verify

that the test results do not materially depend on the choice made.

In considering the results displayed in Tables 2 and 3, we note:

1. Both the BDS and the Hinich bicovariance tests con¯rm the results from the previous studies

cited in Section 1: the null hypothesis of a linear generating mechanism for aggregate real

output can be rejected at the 1-2% level of signi¯cance.

2. The null hypothesis of a linear generating mechanism cannot be rejected at the 5% level for

either speci¯cation of the Solow residual using any of the tests.

3. The null hypothesis of a linear generating mechanism cannot be rejected at even the 35%

level for the capital stock series using any of the tests.

4. The null hypothesis of a linear generating mechanism can be rejected at the 2-5% level for

one of the hours worked series (LH1) and can be resoundingly rejected for the other, LH2.

Tables 4 and 5 summarize the results of the Hinich bicovariance and McLeod-Li tests (Table 4)

and the BDS test (Table 5) for the electricity usage series LECTRIC (which proxies for capital ser-

vices), for the average hours worked series LHAVG (which proxies for unobserved variation in work
6In contrast to alternative choices (e.g., AIC or FPE), the Schwartz criterion is known to be consistent for AR(p)

order determination under the null hypothesis of a linear generating mechanism; see Judge, et al. (1985, p. 246).
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e®ort), and for six alternative de¯nitions of the Solow residual { SOLE1 through SOLCE1 { that

use di®erent measures of capital services and the labor input and allow for imperfect competition.

Two alternative Solow residual series, denoted SOLE1 and SOLE2, respectively, were generated

7using equation (2.6) and the series LECTRIC, depending on which of the two hours worked series

(LH1 or LH2) is used. Equation (2.10) was used to generate four cost-based Solow residuals {

denoted SOLC1, SOLC2, SOLCE1, and SOLCE2 { depending on which of the two hours worked

8series (LH1 or LH2) and which of the two capital stock series (LCDIF or LECTRIC) is used. None

of the results in Tables 4 and 5 would allow one to reject the null hypothesis of a linear generating

9mechanism for LECTRIC, LHAVG, and SOLE1 through SOLCE2 at the 5% level.

These results using LECTRIC, SOLE1, SOLE2, SOLCE1, and SOLCE2 indicate that our con-

clusions are robust with respect to using electricity usage to proxy for variable capital utilization

rates across the business cycle. Similarly, the result on LHAVG indicates that unmeasured varia-

tions in work e®ort across the business cycle are not a signi¯cant source of the observed nonlinearity
7The statistical behavior of this time series was notably a®ected by a pair of outliers in 1973:IV and 1974:I;

consequently, these two observations were set equal to the sample mean.

8In these calculations, the parameter ° was set equal to one.
9The results for SOLC2 are based on observations up to 1987:4 because the series appears to exhibit nonstationarity

over the full sample. Likewise, an outlier was eliminated from LHAVG for 1970:3. The bicovariance test indicates

some evidence against linearity for the average hours worked per worker series; however, in view of the number of

tests performed, we do not view our results on this series as a clear rejection of the linear generating mechanism

hypothesis, even at the 5% level.
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in real output. Finally, the results on SOLC1, SOLC2, SOLCE1, AND SOLCE2 indicate that our

results are robust with respect to using the "cost-based" Solow residual framework proposed by

Hall (1988, 1990) to account for the e®ects of increasing returns to production and/or imperfect

competition. In summary, our result - that a linear generating mechanism for the Solow residual

cannot be rejected - is robust with respect to all of the alternatives to the conventional Solow

residual framework discussed in Section 2.2 above.

Most importantly { having ruled out nonlinearity in the capital markets and having ruled

out nonlinearity in the generating mechanism of exogenous technical shocks across a variety of

approaches to measuring such shocks { we do ¯nd strong evidence of a nonlinear generating mech-

anism for either measure of the labor input to the aggregate production function. Thus, we can

conclude that the observed nonlinearity in the generating mechanism for aggregate real output is

in fact arising from nonlinearities in the markets for labor.

As noted in the Introduction, an asymmetric response of employment across the business cycle

has been documented for a number of di®erent data sets and for a variety of European countries as

well as the U.S. Since such asymmetries are characteristic of many nonlinear generating mechanisms,

our results are consistent with those obtained in that literature. In the next Section, we examine

data simulated from the estimated decision rules for an asymmetric adjustment model of the type

proposed by Pfann and Verspagen (1989), Pfann (1996), and Palm and Pfann (1997) using Dutch

data, to see if a similar pattern of nonlinearity test results obtains.
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5 Results Using Simulated Data from a Model With Asymmetric

Adjustment Costs

In the results described above, we test U.S. data on the growth rates of output, capital, labor and

the implied Solow residual. In this Section, we apply the nonlinearity tests to simulated output,

capital, and labor data from an asymmetric adjustment cost model of the Dutch manufacturing

sector due to Palm and Pfann (1997). Their model assumes linear productivity shocks, but this is

consistent with our results for Solow residuals in the U.S. economy. The data simulated from their

model allows us to determine whether the estimated Palm/Pfann model does or does not yield a

pattern of nonlinearity results for output, capital, and labor similar to that which we found using

10U.S. data directly.

The Palm/Pfann model derives factor demands from the real present value maximization prob-

lem of a ¯rm that chooses the optimal quantities of labor and capital denoted L and K , respec-t t

tively, taking as given the real price of investemnt q and real wage costs w . The ¯rm's objectivet t

function is given by:
( )1X

tE ¯ (Y ¡VC ¡AAC ) ; (5.1)0 t t t
t=0

where ¯ = 1=(1 + r) is the constant discount rate, Y denotes output, VC denotes the variablet t

costs of production, AAC the (asymmetric) adjustment costs, and E is expectation conditionalt 0

on information at date zero.

10Unfortunately, the original sample (N = 72) is too small to support a direct examination of the Dutch data.
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Output is assumed to be produced according to the Cobb-Douglas production function:

1¡® ®Y = z K L ; 0 < ® < 1; (5.2)t t t t

and variable costs are given by:

VC = q (K ¡ (1¡ ±)K ) +w L : (5.3)t t t t¡1 t t

The speci¯cation of adjustment costs follows Pfann and Verspagen (1989) and includes the linear-

quadratic speci¯cation as a special case:

AAC = AAC(¢K ) + AAC(¢L ); (5.4)t t t

1 2where AAC(¢K ) = exp(¯ ¢K ) ¡ 1 ¡ ¯ ¢K + ° (¢K ) , AAC(¢L ) = exp(¯ ¢L ) ¡ 1 ¡t t t t t tK K K L2

1 2¯ ¢L + ° (¢L ) , ¢ is the ¯rst-di®erence operator, ° and ° are constant parameters thatt tL L K L2

measure the adjustment costs of net changes in capital and labor, and ¯ and ¯ are constantK L

parameters that measure the marginal asymmetry between positive and negative net changes in

factor inputs.

The optimal contingency plans for labor and capital satisfy a set of ¯rst-order conditions ob-

tained by di®entiating the objective function in (5.1) with respect to L and K for t = 0; 1; 2; : : :t t

Palm and Pfann (1997) estimate the parameters of the model based on the ¯rst-order optimality

conditions using a generalized method of moments approach with data on the manufacturing sector

for the Netherlands. As part of their analysis, these authors also solve for approximate decision
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rules for L and K as a function of the exogenous series using the parameterized expectationst t

algorithm proposed by Der Haan and Marcet (1990).

Palm and Pfann's model is, in part, driven by an external bivariate real factor price process.

They consider two such generating processes for real factor prices, one which is quadratic and

another which is linear, yielding two sets of simulated output, capital, and employment data.

Our test results for these data are given in Tables 6 and 7, respectively. Both factor price

simulations yield similar results for the capital and labor series: both labor series show little or

no sign of a nonlinear generating process, whereas both capital series are highly nonlinear. (The

output series is highly nonlinear in the simulations based on the linear factor price process and not

signi¯cantly nonlinear in the simulations based on the nonlinear factor price process: apparently

the °uctuations in output are largely driven by the capital °uctuations in the former instance and

by employment °uctuations in the latter.) This is a di®erent pattern from what we observe in

the U.S. data, as shown in Table 1: there the generating mechanism for capital appears linear

whereas the generating mechanism for employment is nonlinear. Whether this discrepancy is due

to di®erences in the two economies or to counterfactual restrictions in the Palm/Pfann model is, at

this point, an open question. However, conditional on the assumption that the Palm/Pfann model

is a reasonable representation of the Dutch economy, our results suggest that there are fundamental

di®erences in the dynamic behavior of the Dutch and U.S. economies.

24



6 Conclusion

We have presented the results of several alternative tests for nonlinearity in the generating mecha-

nisms of real GNP, the inputs to an aggregate production function, and the Solow residuals derived

under several sets of assumptions about the measurement of inputs and the nature of competi-

tion in product markets. We ¯nd substantial evidence that the generating mechanism for real GNP

exhibits nonlinear serial dependence, but no evidence at all for nonlinearity in the generating mech-

anism for the Solow residuals under any of the di®erent speci¯cations that we studied. In principle,

this result for the Solow residuals could be due to insu±cient power in our tests due to the small

size of the sample. However, the fact that we do detect nonlinearity in the generating mechanisms

for real GNP growth and for the growth rate of total hours worked over the same sample period

indicates that the power of the tests is not the problem: we are not detecting nonlinear serial

dependence in the Solow residuals because there simply isn't much there to detect.

We intrepret this result as implying that it is the macroeconomy itself which is nonlinear { not

the technology (or factor productivity) shocks that are impinging on, and in part, driving it. While

we have not considered the behavior of other types of shocks such as demand shocks, our evidence

with respect to the di®erent series suggests that nonlinear models for the behavior of aggregate

output need to be considered rather than nonlinear models for the shocks themselves. And { since

these results indicate that any statistically adequate macroeconomic model must be signi¯cantly

nonlinear { the modelling of rational expectations formation must explicitly take this nonlinearity
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into account.

The generating mechanisms for the measures of the capital services input do not appear to be

signi¯cantly nonlinear; in contrast, we ¯nd that the generating mechanism for total employment is

signi¯cantly nonlinear. The combination of this result with our ¯nding that the generating mecha-

nism for the Solow residual is not signi¯cantly nonlinear implies that the nonlinearity in real output

documented in this and previous studies can be largely attributed to the nonlinearity we and others

(as listed in the Introduction) have shown for the generating mechanism for employment and hours

worked. As one possible propagation mechanism generating the nonlinearity in the labor input

series, we examine the behavior of simulated factor input demands from an asymmetric adjustment

cost model estimated for the manufacturing sector in the Netherlands, and ¯nd that, contrary to

our results using U.S. data, it is the capital input series that displays a nonlinear generating mecha-

nism and not the labor input series. We leave for future work the further examination of alternative

models that can potentially generate the patterns of nonlinearities that we have documented in this

paper.
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Data

The data are quarterly observations for the aggregate economy. Real output is measured as gross

national product in 1987 dollars from the National Income and Product Accounts (NIPA), Table

1.10. Total hours worked are measured in two di®erent ways: ¯rst, as manhours employed per week

for all workers, all industries, derived from the Household Survey of the Bureau of Labor Statistics

publication, The Employment Situation, and second, as total employee-hours for wage and salary

workers in nonagricultural establishments. The corresponding CITIBASE codes are LHOURS and

LPMHU, respectively. Multiplying the ¯rst variable LHOURS (manhours worked per week for all

workers, all industries) by the number of weeks in a quarter yields the ¯rst measure of total hours

worked, LH1. The second measure of total hours worked, LH2, is obtained by time aggregating

the monthly series LPMHU. Average hours worked is calculated by dividing LPMHU by nonfarm

employment, LPNAG. The series on electricity usage is de¯ned as the monthly index of electric

utility sales to commercial and other users; its CITIBASE code is IPCOE. All quarterly series are

derived as three month averages of the monthly series.

There is no published quarterly data on di®erent components of the aggregate capital stock.

We obtained annual data from the Bureau of Economic Analysis capital stock tables described

in the publication, Fixed Reproducible Tangible Wealth of the U.S., 1989. These data are for the

period 1946-1993 and include annual measures of the gross and net stocks of private nonresidential

structures and producers' durable equipment (which comprise the stock of ¯xed nonresidential
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private capital), residential capital, and government owned ¯xed capital consisting of equipment

and structures in 1987 dollars. Our measure of the aggregate net capital stock is obtained as the

sum of the di®erent components of the gross capital stocks, interpolated to a quarterly basis using

the method in Fernandez (1981), and corrected for depreciation. We used quarterly data on gross

investment in nonresidential structures, producers' durable equipment, and residential structures

from the NIPA Table 5.5 to construct the corresponding components of the gross capital stocks.

Likewise, quarterly data on the consumption of ¯xed capital, NIPA Table 1.10, and the rental

income of persons with capital consumption adjustment, NIPA Table 1.14, were used to derive

quarterly measures of depreciation for the ¯xed private nonresidential and residential capital stocks,

respectively. Finally, quarterly series of the net stock of government owned ¯xed capital was linearly

interpolated from the annual measure using the quarterly stock of ¯xed private nonresidential

11capital.

The share of labor in national income denoted ® is constructed as the ratio of total employeet

compensation to national income, NIPA Table 1.14. To calculate the labor share in costs denoted

c® , an estimate of the rental rate of capital is required. Following Hall and Jorgenson (1967), thist

is calculated as:

1¡ z ¿ ¡ !t t tr = (± + v ) p ;t t kt1¡ ¿t

where ± is the average depreciation rate, v is the required rate of return on capital (measured ast

11Our constructed measure of the physical capital is similar to that used by Christiano (1988) and Burnside,

Eichenbaum, and Rebelo (1995) except for the fact that it excludes the stock of consumer durables.
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the dividend yield on the Standard and Poor 500 portfolio), z is the present discounted value oft

depreciation allowances, ! is the investment tax credit rate, ¿ is the pro¯ts tax rate, and p ist t kt

the de°ator for business ¯xed investment, NIPA Table 7.1. The value of ± was taken to be 0.021.

We obtained unpublished data on the present discounted value of depreciation allowances z , thet

investment tax credit ! and current value of the capital stocks of corporate and noncorporatet

capital from Dale Jorgenson. We constructed an aggregate cost of capital variable by weighting

the cost of capital for each sector by the current value of the stocks of corporate and noncorporate

capital. The average marginal tax rates used to construct the cost of capital variables are from

Jorgenson and Yun (1995).

The calculation of the Solow residuals depends on the particular speci¯cation that is used. For

1example, the Solow residual for the benchmark model is computed as ¢ ln(z ) from equation (2.4).t

We replace ® by ®̂ = :5(® + ® ) in all the relevant expressions to obtain a Tornquist indext t t t¡1

of multi-factor productivity. We omitted observations on all the series prior to 1953 to obtain a

sample of 163 observations, from 1953:I to 1993:III.

37







Table 1 { Variable Names and De¯nitions

This Table de¯nes all the variables in the text. The Appendix contains
a further description of how each of these variables is constructed.

LY: growth rate of real GNP
LH1: growth rate of hours worked for all workers, all industries
LH2: growth rate of employee-hours in nonagricultural establishments
LC: growth rate of physical capital stock
LCDIF: di®erences of growth rate of physical capital stock
LECTRIC: growth rate of electricity usage
LHAVG: growth rate of average hours per worker
SHARE: share of labor in total income
SHAREC: share of labor in total costs
SOL1: LY- SHARE*LH1 -(1-SHARE)*LC
SOL2: LY- SHARE*LH2 -(1-SHARE)*LC
SOLE1: LY- SHARE*LH1 -(1-SHARE)*LECTRIC
SOLE2: LY- SHARE*LH2 -(1-SHARE)*LECTRIC
SOLC1: LY- SHAREC*LH1 -(1-SHAREC)*LC
SOLC2: LY- SHAREC*LH2 -(1-SHAREC)*LC
SOLCE1: LY- SHAREC*LH1 -(1-SHAREC)*LECTRIC
SOLCE2: LY- SHAREC*LH2 -(1-SHAREC)*LECTRIC



aTable 2 { Hinich Bicovariance and McLeod-Li Test Results

This Table summarizes the results using the Hinich bicovariance test and the McLeod-Li test. The tests are applied
to the real output (LY), capital stock (LCDIF), and hours worked (LH1 and LH2) series and also to the two implied
Solow residual series { SOL1 and SOL2. De¯nitions of these series are in the Appendix. The McLeod-Li test results
are reported for lags k = 1; 2; 3; 4, and 8; the Hinich bicovariance test uses ` = 7. These tests are described in
Section 3.

Output Capital Labor
Test (growth rate) (growth rate) hours worked, all industries employee hours, nonagric. est.

LY LCDIF (growth rate) implied Solow (growth rate) implied Solow
LH1 residual SOL1 LH2 residual SOL2

Hinich
¤ ¤ ¤¤bicovariance 0:012 0.605 0:018 0.404 0:000 0.088

McLeod-Li
1 0.407 0.601 0.939 0.704 0.172 0.466

¤2 0.229 0.868 0.718 0.869 0:047 0.397
¤3 0.344 0.829 0.667 0.243 0:038 0.380
¤4 0.416 0.918 0.541 0.306 0:014 0.543
¤8 0.191 0.380 0.526 0.650 0:015 0.867

aSigni¯cance level at which null hypothesis of linear generating mechanism can be rejected, based on 1000 bootstrap
replications generated using 163 pre-whitened observations from 1953:I to 1993:III. Results which are signi¯cant at
the 5% and 1% levels are marked with a ¤ and ¤¤, respectively.



aTable 3 { BDS Test Results

This Table summarizes the results using the BDS test. The tests are applied to the real output (LY), capital stock
(LCDIF), and hours worked (LH1 and LH2) series and also to the two implied Solow residual series { SOL1 and
SOL2. De¯nitions of these series are in the Appendix. The BDS test is described in Section 3; ² is the sup norm
on the m-histories, m is the embedding dimension.

Output Capital Labor
² m (growth rate) (growth rate) hours worked, all industries employee hours, nonagric. est.

LY LCDIF (growth rate) implied Solow (growth rate) implied Solow
LH1 residual SOL1 LH2 residual SOL2

¤¤0.5 2 0.359 0.531 0.582 0.434 0:002 0.154
¤¤0.5 3 0.221 0.345 0.285 0.441 0:001 0.091
¤¤0.5 4 0.365 0.395 0.059 0.712 0:002 0.123
¤¤1.0 2 0.363 0.635 0.163 0.876 0:006 0.243

¤ ¤¤1.0 3 0:037 0.755 0.080 0.809 0:000 0.154
¤ ¤¤1.0 4 0:023 0.775 0.053 0.878 0:000 0.133

2.0 2 0.203 0.378 0.186 0.607 0.092 0.119
¤ ¤¤2.0 3 0:040 0.511 0.095 0.566 0:019 0.079
¤ ¤¤2.0 4 0:022 0.626 0.144 0.730 0:006 0.092

aSigni¯cance level at which null hypothesis of linear generating mechanism can be rejected, based on 1000 bootstrap
replications generated using 163 pre-whitened observations from 1953:I to 1993:III. Results which are signi¯cant at
the 5% and 1% levels are marked with a ¤ and ¤¤, respectively.



aTable 4 { Hinich Bicovariance and McLeod-Li Test Results

This Table summarizes the results using the Hinich bicovariance test and the McLeod-Li test. The tests are applied
to the electricity usage (LECTRIC), average hours worked per worker (LHAVG) and six Solow residual series {
SOLE1 through SOLCE2. De¯nitions of these series are in the Appendix. The McLeod-Li test results are reported
for lags k = 1; 2; 3; 4, and 8; the Hinich bicovariance test uses ` = 7. These tests are described in Section 3.

Electricity Average hours
usage per worker Solow residuals

Test (growth rate) (growth rate)
LECTRIC LHAVG SOLE1 SOLE2 SOLC1 SOLC2 SOLCE1 SOLCE2

Hinich
¤bicovariance 0.808 0:045 0.342 0.147 0.362 0.065 0.354 0.086

McLeod-Li
1 0.241 0.512 0.620 0.323 0.709 0.981 0.461 0.195
2 0.438 0.700 0.660 0.613 0.915 0.771 0.707 0.350
3 0.197 0.640 0.616 0.819 0.304 0.893 0.689 0.441
4 0.112 0.800 0.360 0.571 0.417 0.710 0.332 0.492
8 0.246 0.879 0.498 0.521 0.621 0.902 0.461 0.682

aSigni¯cance level at which null hypothesis of linear generating mechanism can be rejected, based on 1000 bootstrap
replications generated using 163 pre-whitened observations from 1953:I to 1993:III. Results which are signi¯cant at
the 5% and 1% levels are marked with a ¤ and ¤¤, respectively.



aTable 5 { BDS Test Results

This Table summarizes the results using the BDS test. The tests are applied to the electricity usage (LECTRIC),
average hours worked per worker (LHAVG) and six Solow residual series { SOLE1 through SOLCE2. De¯nitions
of these series are in the Appendix. The BDS test is described in Section 3; ² is the sup norm on the m-histories,
m is the embedding dimension.

Electricity Average hours
² m usage per worker Solow residuals

(growth rate) (growth rate)
LECTRIC LHAVG SOLE1 SOLE2 SOLC1 SOLC2 SOLCE1 SOLCE2

0.5 2 0.107 0.655 0.945 0.257 0.360 0.859 0.840 0.174
0.5 3 0.294 0.856 0.940 0.107 0.610 0.831 0.914 0.130
0.5 4 0.199 0.920 0.891 0.153 0.646 0.893 0.975 0.056
1.0 2 0.125 0.600 0.558 0.285 0.743 0.742 0.381 0.264
1.0 3 0.149 0.526 0.622 0.159 0.826 0.569 0.543 0.304
1.0 4 0.242 0.343 0.709 0.117 0.795 0.428 0.546 0.184
2.0 2 0.170 0.673 0.270 0.125 0.488 0.597 0.229 0.074
2.0 3 0.231 0.716 0.320 0.077 0.571 0.448 0.387 0.071
2.0 4 0.380 0.433 0.426 0.057 0.643 0.295 0.518 0.057

aSigni¯cance level at which null hypothesis of linear generating mechanism can be rejected, based on 1000 bootstrap
replications generated using 163 pre-whitened observations from 1953:I to 1993:III. Results which are signi¯cant at
the 5% and 1% levels are marked with a ¤ and ¤¤, respectively.



Table 6 { Palm/Pfann (1997) Asymmetric Adjustment Cost Model Test Results:
aQuadratic Real Factor Prices External Driving Process

This table summarizes the results using the Hinich bicovariance test, the McLeod-Li test,a nd the BDS test.
The tests are applied to the simulated real output (Y), capital stock (K), and employment (L) series from the
Palm/Pfann (1997) asymmetric adjustment cost model with a quadratic real factor prices external driving process.
The McLeod-Li test results are reported for lags k = 1; 2; 3; 4, and 8; the Hinich bicovariance test uses ` = 10.
These tests are described in Section 3.

Output Capital Labor Output Capital Labor
Test (growth rate) (growth rate) (growth rate) Test (growth rate) (growth rate) (growth rate)

Y K L Y K L
BDS

Hinich ² m
¤¤ ¤¤bicovariance 0.311 0:000 0.428 0.5 2 0.109 0:000 0.634

¤¤0.5 3 0.062 0:000 0.613
¤¤0.5 4 0.055 0:000 0.336
¤¤McLeod-Li 1.0 2 0.189 0:000 0.411

¤¤ ¤¤1 0.714 0:000 0.691 1.0 3 0.088 0:000 0.422
¤¤ ¤ ¤¤2 0.086 0:000 0.870 1.0 4 0:038 0:000 0.254
¤¤ ¤¤3 0.140 0:000 0.937 2.0 2 0.406 0:000 0.264
¤¤ ¤¤4 0.140 0:000 0.969 2.0 3 0.195 0:000 0.217
¤¤ ¤¤8 0.257 0:000 0.901 2.0 4 0.158 0:000 0.184

a Based on 355 simulated observations, using ¯ve simulation runs of 71 observations each. After an adjustment for
di®ering sample variances, the data were reasonably stationary across the simulations.



Table 7 { Palm/Pfann (1997) Asymmetric Adjustment Cost Model Test Results:
aLinear Real Factor Prices External Driving Process

This table summarizes the results using the Hinich bicovariance test, the McLeod-Li test, and the BDS test.
The tests are applied to the simulated real output (Y), capital stock (K), and employment (L) series from the
Palm/Pfann (1997) asymmetric adjustment cost model with a linear real factor prices external driving process.
The McLeod-Li test results are reported for lags k = 1; 2; 3; 4, and 8; the Hinich bicovariance test uses ` = 10.
These tests are described in Section 3.

Output Capital Labor Output Capital Labor
Test (growth rate) (growth rate) (growth rate) Test (growth rate) (growth rate) (growth rate)

Y K L Y K L
BDS

Hinich ² m
¤ ¤¤ ¤¤ ¤¤bicovariance 0:033 0:000 0.093 0.5 2 0:000 0:000 0.271

¤¤ ¤¤0.5 3 0:000 0:000 0.115
¤¤ ¤¤ ¤0.5 4 0:000 0:000 0:047
¤¤ ¤¤McLeod-Li 1.0 2 0:000 0:000 0.312

¤¤ ¤¤ ¤¤ ¤¤1 0:007 0:000 0.267 1.0 3 0:000 0:000 0.156
¤¤ ¤¤ ¤¤ ¤¤2 0:000 0:000 0.512 1.0 4 0:000 0:000 0.083
¤¤ ¤¤ ¤¤ ¤¤3 0:001 0:000 0.152 2.0 2 0:001 0:000 0.832
¤¤ ¤¤ ¤¤ ¤¤4 0:001 0:000 0.156 2.0 3 0:000 0:000 0.713
¤¤ ¤¤ ¤¤ ¤¤8 0:002 0:000 0.379 2.0 4 0:000 0:000 0.582

a Based on 355 simulated observations, using ¯ve simulation runs of 71 observations each. After an adjustment for
di®ering sample variances, the data were reasonably stationary across the simulations.


