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The model selection and Granger-causality literatures have generally focused on insample
rather than postsample hypothesis testing.  In large part this is due to the fact that feasible
postsample model validation periods are usually quite short, whereas large-sample methods are
ordinarily required in order to deal with the serial correlation and crosscorrelation typically found
in postsample forecast error series.  This paper describes a re-sampling based postsample
inference procedure which enhances the usefulness of the inference significance levels it produces
by explicitly estimating the uncertainty which its own large-sample approximation induces in these
levels.  

For a given target level of inferential precision (such as significance at the 5% level) this
procedure also provides estimates of both how strong the evidence in favor of one of two models
must be for a given length postsample period and of how long a postsample period is necessary if
the evidence is of given strength.  These results indicate that a postsample model validation period
substantially longer than the five to twenty periods typically reserved in past studies is necessary
in order for a twenty to thirty percent MSE reduction to be significant at the 5% level.  The value
of the procedure is illustrated using postsample forecasting error data from Ashley, Granger, and
Schmalensee (1980), in which evidence is presented for unidirectional Granger-causation from
fluctuations in aggregate consumption expenditures to fluctuations in aggregate expenditures on
advertising using U.S. data.
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1. Introduction

This paper describes a new inference technique for assessing whether one sequence of

postsample forecasting errors is smaller than another.  Such inferences are particularly useful

where substantial specification search activity has reduced the usefulness of insample procedures

for model selection and/or validation.

Postsample forecast error series are typically strongly crosscorrelated and often

significantly serially correlated as well.  Under these conditions existing postsample inference

techniques [such as Ashley, Granger and Schmalensee (1980), Ashley (1981), Meese and Rogoff

(1988), and Diebold and Mariano (1995)] are only valid for large samples.  This is awkward since

postsample model validation periods are usually short.

The postsample inference technique proposed here is a variation on the bootstrap designed

to mitigate this awkwardness by producing an explicit estimate of the uncertainty which its own

large-sample approximation induces in the inference significance levels.  In addition to accounting

for any crosscorrelation or serial correlation in the two forecast error series being compared, this

new technique also conveniently allows consideration of a variety of forecast error loss functions

and provides an estimate of how much stronger the evidence would need to be or how much

longer a postsample model validation period is necessary in order to obtain a given level of

inferential precision.

The nature and advantages of bootstrap-based inference are briefly reviewed in the first

portion of Section 2 in the context of a very simple problem: inference on the population mean of

an i.i.d. random variate.  The remainder of Section 2 describes the variation on the bootstrap

introduced here.  In Section 3 this new approach is extended to produce inferences on ratios of
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expected functions of pairs of correlated and/or serially dependent time series.  The usefulness of

the procedure in small sample settings is demonstrated in Section 4 using monte carlo simulations. 

In Section 5 the new technique is applied to the postsample forecast error series generated

in the Ashley, Granger, and Schmalensee (1980) study of the Granger-causal relation between

aggregate U.S. consumption expenditures and aggregate U.S. advertising expenditures.  This

example illustrates the new procedure’s ability to provide useful Granger-causation inferences in a

small sample setting under alternative loss functions on forecast errors (such as the absolute error

loss function or an asymmetric piecewise-quadratic loss function) and its ability to generate

inferences using the scaled mean loss differential statistic introduced in Diebold and Mariano

(1995).  

The results from this example indicate that a postsample model validation period

substantially longer than the five to twenty periods typically reserved in past studies is necessary

in order to conclude that a twenty to thirty percent MSE reduction is significant at the 5% level. 

This issue is discussed in the final portion of the paper.



     More explicitly, if the original sample is denoted x(1)…x(N), a new N-sample can be obtained by drawing N1

integers {j  … j } at random from the discrete uniform distribution which places equal weight on each integer in [1, N]. 1 N

The resulting new N-sample is x(j ) … x(j ).1 N
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2. Enhancing the Usefulness of Bootstrap Inference in Small-Sample Settings

In this Section bootstrap-based inference is briefly described in a simple setting in order to

clarify its nature and to show how a second level of bootstrapping can be used to quantify the

small-sample uncertainty induced in the inferences by the bootstrap approximation itself.

Consider the problem of using a random sample of  N observations on a variable x to test

whether its population mean (µ) is less than some given value, µ .  Non-bootstrap inferenceo

typically begins by choosing among candidate estimators for the unknown parameter based on

their sampling properties.  In this case the sample mean, x, is the obvious choice.  Since x is— —

known to be asymptotically Gaussian, most analysts would routinely assume that the distribution

of x is sufficiently close to being Gaussian that this asymptotic distribution provides a reasonable

approximation to the finite-sample distribution of  x.  Asymptotically valid confidence intervals—

for µ and hypothesis tests concerning µ are then derived on the assumption that the sampling

distribution of x is Gaussian.—

In the bootstrap approach, the population distribution of x is approximated by its empirical

distribution, which places equal probability mass on each of the N observed values for x.  Singh

(1980), Bickel, P. J. and D. A. Freedman (1981), Beran, R. (1986) and others have shown that

this approximation is inconsequential in large samples.  Under it, as much additional data as is

needed can be generated by sampling at random out of the empirical distribution of the observed

sample.   Thus, the probability that µ < µ  can be estimated by generating, say, 2000 new 1
o
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N-samples on x and computing the proportion of the resulting 2000 realizations of x for which—

x < µ .—
o

Both approaches are only asymptotically justified, but the bootstrap has three advantages. 

First, the bootstrap is often easier to apply than alternative methods, although it does require

substantially larger amounts of computational resources.  Second, inferences and parameter

estimates obtained using the bootstrap are often more accurate in small samples  in some cases

[e.g., Freedman and Peters (1984)] dramatically so.  Finally, the bootstrap approach can in

principle be used to quantify the sensitivity of its own inference results to the errors induced by

the bootstrap approximation itself.

This last advantage of bootstrap-based inference is the most relevant feature for the

present purpose.  Instead of generating 2000 new N-samples and computing the proportion of

them for which x < µ , consider generating a smaller number of N-samples (100, say) and—
o

proceeding with each one as if it were the original sample.  That is, for each one of these 100

“starting samples,” 2000 new N-samples are generated and the proportion of the resulting 2000

realizations of x for which x < µ  is computed.  In this way, each of the 100 starting samples— —
o

yields an inference on µ in the form of a probability estimate.  The dispersion of these 100

inference probabilities provides an estimate of the uncertainty in the bootstrap inference due to the

finite size of N; it can be taken as estimate of the “fragility” of the inference, in the spirit of

Leamer (1985).

Since the distribution of these inference probabilities necessarily becomes very non-

Gaussian when the average inference probability becomes small, the median and interquartile

range of the 100 inference probabilities provide more useful measures of the location and



5

dispersion of this distribution than do the mean and standard deviation.  Consequently, inference

results are reported below in terms of the median inference (Q ) and its empirical 50%.50

confidence interval, [Q  , Q ].  Here Q  is the % fractile of the 100 inference probabilities, so.25 .75

the length of this interval is just the sample interquartile range.

This uncertainty estimate based on the interquartile range of the 100 probability estimates

is itself only asymptotically justified, but it nevertheless conveys considerable information about

the reliability of the median bootstrap inference.  Alternative checks on the reliability of the

median inference (and its dispersion) can be obtained at varying cost.  For example, it is easy to

verify whether or not 100 starting samples and 2000 bootstrap repetitions suffice to make the

median inference insensitive to changes in the starting seed for the random number generator. 

Another inexpensive check is to compare the median inference probability to the inference one

obtains from the ordinary bootstrap, in which 2000 new samples are drawn from the empirical

distribution of the observed sample data.  Finally, at tremendously larger cost, monte carlo

simulations can be used to estimate the coverage of the empirical 50% interval on the inferences;

the results of such calculations are reported in Section 4 below.

However, there are three reasons why this simple approach to verifying  the small-sample

reliability of bootstrap-based inferences is almost never implemented. [Freedman and Peters

(1984) provides a rare exception.]  First of all, the additional computational burden involved is

obviously substantial  in the example above, estimating an empirical 50% confidence interval for

the bootstrap inference requires 100 times as many bootstrap replications.  Secondly, theoretical

work on bootstrap inference [e.g., DiCiccio and Romano (1988)] has focused on improving the

accuracy of bootstrap inference rather than on quantifying the degree to which it remains
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uncertain.  Thus, while several second-level ("double") bootstrapping proposals have been

advanced – e.g., Beran (1987) – the second level of bootstrapping in these proposals is used to

improve the small-sample accuracy of the first level inference rather than to quantify its small-

sample uncertainty.

Lastly, the straightforward dispersion calculation described above turns out to be subtly

flawed in such a way as to substantially overstate the actual small-sample dispersion in the

bootstrap inferences.  Consequently, the initial results obtained in trying out an idea of this sort

are apt to be so poor as to discourage further interest in the approach.  The flaw in the

straightforward dispersion calculation is fundamental, but simple and easily avoided once

recognized.

Ordinarily, the distinction between the sampling distribution of an estimator (such as x)—

and the distribution of its sampling errors (x - µ) is inconsequential since these two distributions—

differ only by a translation in the fixed amount µ.  Thus, under the null hypothesis that µ = µ, theo

probability that x < 6, say,  is identical to the probability that the sampling error x - µ  <  6 - µ . — —
o o

But this distinction is not inconsequential in the present context. 

In the preceding example, 100 starting samples are picked from the empirical distribution

of the original data and then 2000 new N-samples are picked from the empirical distribution of

each starting sample.  Thus, a total of 200,000 N-samples are drawn; and each one is used to

compute a value for x.  Notice, however, that these 200,000 N-samples are not all drawn from—

the same distribution.  The first 2000 N-samples are all drawn from the empirical distribution of

the first of the 100 starting samples.  Letting  µ  denote the population mean of the distribution1

from which these N-samples are drawn, note that µ  must precisely equal x  (the sample mean of1 1
—
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the first starting sample) since the empirical distribution gives equal weight to each of the N

observations in the first starting sample.  The second group of  2000 N-samples is drawn from the

empirical distribution of the second of the 100 starting samples, with population µ (which is2

equal to x ) and so forth.  Clearly,  these 100 population means (µ  … µ ) will vary substantially—
2 1 100

for small N, inducing substantial additional dispersion in the resulting 100 inferences.  This

additional dispersion is extraneous since it is not due to the bootstrap approximation of using the

empirical distribution of the original sample data to replace the population distribution from which

the original N-sample was  drawn.  Indeed, this source of inferential dispersion would be equally

strong even if each of the 100 starting samples was drawn, monte-carlo fashion, from the actual

population distribution of x.

This problem does not arise when the bootstrap approximation is used to generate 100

estimates of the sampling error distribution of x, since all of  these distributions have mean zero. —

Letting x  denote the sample mean of the actual sample data, then H : µ < µ   implies that x  - µ,— —
o o o o

the sampling error implied by x , exceeds x  - µ .  Consequently, the ith starting sample can be— —
o o o

used to estimate the probability that µ < µ  by computing the fraction of the 2000 N-samples foro

which the sampling error x  - µ  =   x  - x   exceeds x  - µ , where x  is the sample mean of the jth— — — — —
ij i ij I o o ij

N-sample drawn from the ith starting sample and x  is the sample mean of the ith starting sample. —
I

Thus, the fraction of the 2000 sampling errors which exceed x  - µ   is the inference probability—
o o

on µ from the ith of the 100 starting samples.  These 100 inference probabilities are much more

stable across the starting samples than those obtained from the 100 sampling distributions of x—

itself, simply because the distribution of the sampling errors (x  - µ ) is much more stable across—
ij i

the starting samples than is the distribution of  x .  In fact  presuming that the number of N-—
ij

samples drawn from each starting sample is sufficiently large  the distribution of these sampling



     The empirical distribution of the original sample data is not identical to the population distribution from which the2

original sample was drawn, however.  Consequently, this dispersion estimate is itself valid only for large samples.  This
issue is examined using monte carlo simulations in Section 4 below.
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errors varies across the starting samples only because the empirical distribution implied by each

starting sample is derived from an N-sample bootstrapped from the original sample data rather

than from the original sample data itself.  Thus, the dispersion across the starting samples of the

inferences based on the sampling error distributions quantifies the uncertainty in the inferences

caused by the bootstrap assumption itself.2

In summary, the median of the inference probabilities obtained from these bootstrapped

sampling error distributions provides an estimate of the probability that µ < µ.  And theo

dispersion of these inference probabilities across the starting samples quantifies the small-sample

uncertainty in the median inference due to the bootstrap approximation of replacing the

population distribution of x by its observed empirical distribution.  In this way – by explicitly

estimating the small-sample uncertainty in the bootstrap inference – it becomes feasible to obtain

potentially convincing inferences from the bootstrap in a small-sample setting.  
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3. Inference on Postsample Forecast Errors

The bootstrap-based inference approach described above is applied here to the problem of

testing whether the expected size of the postsample forecasting errors from one model

significantly exceeds that of another, based on an observed sequence of N postsample forecasting

errors from each model.

These two postsample forecasting error series are denoted x and y  below.  Sincet t

postsample forecast errors are typically autocorrelated, it is not appropriate to sample directly

from their empirical distribution.  Instead, it is assumed here that (x, y ) is covariance stationaryt t

and that its generating mechanism can be adequately represented as a bivariate VAR process:

(1)

so that new N-samples {(x , y ) … (x , y )} can be obtained by sampling from the empirical1 1 N N

distribution of the innovations, ( , ) … ( , ).  1 1 N N

The assumptions underlying Equation 1 can and should be checked.  Stationarity in mean

and variance can be checked by examining time plots of x and y , looking for outliers and fort t

evidence of substantial shifts or trends in mean or variance.  And the linearity assumption inherent

in Equation 1 can be checked by examining scatterplots of  x and y   for k = 0, ±1, ±2 , etc. t t+k

Since Gaussianity is not assumed, an outlier which is not overly influential can be tolerated; such

an observation can  be viewed as an ordinary realization from a non-Gaussian (x, y ) distribution. t t

However, formal testing is beside the point in this context: if N were large enough for such testing

to be justified, available large-sample methods would suffice for obtaining the relevant postsample

inference in the first place.  



     In ordinary VAR modeling, these orders are chosen to be sufficiently large that the innovation series ( , ) is3
t t

serially uncorrelated.  Since the bootstrap makes independent picks from the observed  (in general, non-Gaussian)
innovation sequence, it must be assumed here that these orders are sufficiently large that ( , ) is serially independent.t t

However, this distinction is relevant if and only  if (x , y ) is related to its own past in a substantially nonlinear way;t t

postsample forecasting periods are ordinarily so short that any consideration of serial dependencies more complex than
the low-order VAR mechanism used here is out of the question in any case.
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Note that x  and y  are the postsample forecasting error series produced by two differentt t

models whose relative forecasting effectiveness is being evaluated.  The VAR model given above

as Equation 1 is neither of these models; it is merely a descriptive parameterization of the serial

correlation structure of the forecast errors (x and y) made by these two models.  Thus,t t

covariance stationarity of the (x, y )  implies that the forecast horizon must be the same for all oft t

the x  – e.g., they are all h -step-ahead forecasts; similarly, all of the y must be h -step-aheadt x t y

forecasts.  But h  need not equal h .  Indeed, it is not necessary to observe or know anythingx y

further about the two forecasting models that generated the forecasting error series, x and y . t t

These two models might be nested or they might not; they might be equally-complex constructs

arising from differing schools of thought, or one of them might be quite naive compared to the

other.  Since all that is used from each of the two models is a sequence of postsample forecasting

errors, the internal structure of these two models is irrelevant.

The coefficients in the distributed lag polynomials { (B), (B), (B), and (B)},11 12 21 22

the intercepts (µ , µ ), and the distribution of ( , ) in Equation 1 need not be supplied – the onlyx y t t

specification information required is a reasonably tight upper bound on the maximum lag in each

of the four lag polynomials.   Usably accurate upper bounds on these lag polynomial orders can be3

obtained by running a few linear regressions and eliminating the clearly insignificant terms.  This

suffices because the inference results are insensitive to minor over-elaboration in the specification

of these upper bounds; monte carlo simulation results illustrating this point are given in Section 4.
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Figure 1 provides a schematic description of the calculation of the probability that a

specified relative accuracy criterion, r, is less than or equal to some given value, ; most

 commonly,  will equal one.  The population value for r could be the ratio of the two MSE's:

but other choices for r are possible and often preferable.  For example, if the distribution of       

(  , ) is fat-tailed, thent t

might be preferable; or, if negative errors are known to cause substantially higher losses, it would

be preferable to use an asymmetric criterion, such as

where s(z) = 1 for z  0 and s(z) = 2, say, for z < 0.  Alternatively, the superiority of the yt

forecast error series over the x error series can be quantified using the studentized expected losst

differential criterion proposed by Diebold and Mariano (1995):



N log(rdm)

rDM exp
E loss xt loss yt

2 fd 0

     Space limitations preclude an extensive discussion of their criterion here.  They provide a consistent estimator of 4

which is very easy to compute and is asymptotically distributed N(0,1) when the population loss differential
is zero and the loss  differential series (loss{x } - loss{y }) is serially uncorrelated beyond a given lag.t t
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where f (0) is the spectral density of the numerator at frequency zero.  Loss(·) is a situationallyd

appropriate loss function; the absolute value function is used in the calculations reported below in

Section 5.  Here r  is defined as the exponential of Diebold and Mariano's criterion so that rDM

equals one for equivalent forecasts on all four criteria.4

Returning to Figure 1, r is the population value of whichever forecast accuracy criterion

has been selected.  The object is to test the null hypothesis H : r   against the alternativeo

hypothesis H : r > , based on the observed N-sample: {(x , y ) … (x , y )}.  As Figure 1A 1 1 N N

indicates, this original sample data is only used twice.  

First, it is used to obtain r , a consistent sample estimate of r; using r , for example, r ^ ^
orig MSE orig

is the ratio of the sample mean of (x)  to the sample mean of (y) .  The resulting  r /  figure ist t orig
2 2 ^

the sampling error factor this sample estimate represents if r equals , so that H  is barely true. o

Comparing the observed sampling error factor, r / , to the distribution of sampling error factors,^
orig

r  /r , rather than comparing the observed sampling error itself, r  - , to the distribution of^ ^
observed true orig

sampling errors, r  - r , makes the inference results independent of which error series is^
observed true

chosen to appear in the numerator of r – i.e. it ensures that Prob{r } precisely equals 

Prob{r }.  -1 -1

Second, the original sample data is used to obtain OLS estimates of the parameters in the

VAR model, Equation 1.  Since corr( , ) can be substantial, SUR would be preferable int t



     Bootstrapping from the residuals of an estimated autoregressive time series model is not new – Efron and Tibshirani5

(1985, p.27) do this for a one-dimensional AR(1) model as one of their first applications of the bootstrap.  Picking from
the empirical distribution of 2-vectors asymptotically preserves the contemporaneous crosscorrelation structure of the
original innovations.
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principle, but N is not ordinarily large enough to justify its use.  It is useful to correct the OLS

parameter estimates for small-sample bias; monte carlo simulation results illustrating this point

(and a description of the bias correction algorithm itself) are given in Section 4.  At this point the

original sample data has yielded (1) an observed sampling error factor (assuming that r just equals

) and (2) an estimated data generating mechanism  the fitted VAR model and its residuals, {( ,^
1

) … ( , ).^ ^ ^
1 N N

Next, this estimated VAR model is used to generate new observations on (x, y ) using thet t

bootstrap assumption that the population distribution from which the innovation 2-vectors 

( , ) … ( , )} were drawn is identical to the empirical distribution of the fitting errors1 1 N N

{( , ) … ( , )}, which places probability mass 1/N on each of these observed 2-vectors.   If^ ^ ^ ^ 5
1 1 N N

the maximum lag in the VAR is p, then the next observation on (x, y ) follows directly from thet t

previous p values of (x, y ), the VAR model coefficient estimates and the next innovation 2-t t

vector,  ( , ), where j is a randomly chosen integer in the interval [1, N].  The p values of (x, y )^ ^
j j t t

needed to initiate the simulations can be sample values or even zeroes – after a sequence of 50 to

100 observations have been generated in this way (and discarded) their influence becomes

negligible.  In this way, the algorithm generates a number of new N-samples on (x, y ).  Sincet t

these N-samples are generated from the model estimated using the original sample data, they are

analogous to the 100 “starting samples” discussed in Section 2; the number of these starting

samples generated is denoted “N ” below.sim

Each of these N  starting samples is then used to obtain an estimate of the distribution ofsim

sampling error factors, r  /r , via a large number of new samples generated using the^
observed true



     Thus, to fix the notation, there are N  = 2000 bootstrap “repetitions” for each of N  = 100 “simulations” and each6
rep sim

simulation is initiated by using one of the N  starting samples generated from the original sample data.  In practice, Nsim rep

and N   are to be increased to the point where the results are no longer appreciably sensitive to their values.sim

     The r  … r   are analogous to the 100 population means (µ  … µ ) of Section 2.  For r = r  the population7 true t rue
1 Nsim 1 100 MSE

MSE ratio for the data generating mechanism derived from the 37th starting sample (r ) can be obtained analytically. t rue
37

This is not feasible for the other criterion choices, so r  is obtained by merely simulating a very large sample from thet rue
37

data generating mechanism.
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bootstrap approximation.  The number of new samples generated is denoted N  in Figure 1 andrep

generally set equal to 2000 in the calculations reported below.  6

Figure 1 describes how {(r / r ),  j = 1 … N }, the distribution of sampling error^ t r ue
j 37 rep

factors obtained applying the bootstrap to the 37th starting sample, is obtained.  First, a  VAR

model is estimated by applying OLS to the 37th starting sample.  As with the estimated VAR

model for the original sample data, the resulting parameter estimates are corrected for small

sample bias using the algorithm described in Section 5.  Then this estimated model is used as a

data generating mechanism to generate:

(a) N   N-samples {(x , y ) … (x , y )} which yield N  sample estimates of r,  r  ... r ,rep 1 1 N N rep 1 Nsim
^ ^

and

(b) a single, large sample of length 100N {(x , y ) … (x , y )}, which yields a large-1 1 100N 100N

sample estimate of r, r .  This large sample ratio (r ) is essentially equal to the populationt r ue t r ue
37 37

value of r for this 37th VAR process.   Presuming that N  is sufficiently large that the observed7
rep

distribution of the N  values of (r  / r ) adequately characterizes the sampling error factorrep j 37
^ t r ue

distribution implied by this  37th data generating mechanism, the 37th estimate of the probability

that  r   (i.e., ) is the fraction of the N  sampling error factors that exceed r / .^ ^
37 rep orig

The other N  - 1 sampling error factor distributions are obtained in a similar fashion..sim

These distributions are unequal to one another for two reasons:  First, each starting N-sample is

too small to precisely recover the single set of VAR coefficients (obtained using the original

sample data)  used to generate all N  starting samples.  This imprecision is presumably similar tosim



     This population distribution is just the empirical distribution of the residuals from the VAR model obtained using the8

original sample data.
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that with which the true (population) VAR coefficients can be recovered from the single observed

sample.   And second, even if the true VAR coefficients could be used in generating all of the Nsim

starting samples, the empirical distribution of the residuals implied by each of the starting samples

is different for each starting sample because each one is only a bootstrap approximation to the

population distribution from which they were all picked.   Thus, the dispersion in the inference8

probabilities obtained from these N  sampling error factor distributions – i.e., the dispersion in sim 1
^

…   – quantifies the inferential uncertainty caused by sampling errors in the estimation of the^
Nsim

VAR model and by the bootstrap approximation itself.



The inference from simulation # 37 {i.e. 37} is then the fraction of the Nrep sampling

error factors obtained in simulation # 37 which are greater than or equal to

the sampling error factor which the original sample observation represents if r . Or:

37 Fraction of
r̂1

r true
37

r̂Nrep

r true
37

r̂orig

Obtain r   –  sample^
orig

estimate of r

r /  = Sampling error factor this^
orig

observation represents if  r = .

original sample data

Use the estimated VAR model to
generate N   100 starting samplessim

Estimate VAR model

37th starting sample
 (used to initiate 37th simulation)

Calculate population r based on
this VAR model  –  r .t rue

37

Obtain r   –   sample estimate of r^
1017

using 1017th of these N  samples. rep

Use this VAR model to generate
N   2000 samples.rep

Estimate VAR Model using
37th Starting sample

# 1017th

Obtain sampling error factor from
1017th repetition  –  r /r .^ t rue

1017 37

Figure 1.

Calculation of  , the 37th Estimate of Probability that  r  37
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(2)

4. Monte Carlo Simulation Results

The empirical 50% confidence interval, [Q  , Q ], is defined above in Section 2.  By.25 .75

definition it contains the middle half of the N  inference probabilities (  ... ) described insim 1 Nsim
^ ^

Section 3.  In this Section, monte carlo simulations are used to estimate the actual coverage of

this 50% inference interval.  The sensitivity of this coverage to sample size, mis-specification of

the VAR model, and bias correction in the VAR coefficient estimates is examined.

Each monte carlo simulation is conducted as follows: First, N innovation vectors, 

{( , ), t = 1 ... N} are generated from a truncated bivariate gaussian distribution.  Twot t

truncation points are considered here: ±3 , corresponding to an essentially gaussian distribution,

and  ±.5 , corresponding to a nearly uniform distribution.  In view of the large contemporaneous

crosscorrelations typically found among postsample forecasting errors obtained from different

models, the innovations in the VAR model for these errors are generated with corr ( , ) equalt t

to .60.  N-samples {(x , y ) ... (x , y )}are generated from the model1 1 N N

with t = 1 ... N.  

Since the VAR model is symmetric in its treatment of x and y , the population values oft t

r  and r  are both one.  A large number of such N-samples are used to estimate the p = .05MSE MAE

and p = .01 critical points, (N) and (N), defined by:mse mae
p p
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and 

for N = 5, 10, 20, and 40 and using both truncation points.  Thus, for example, in 40,000 samples

of length 20 simulated with truncation at ±3 , the sample MSE ratio exceeds 1.48 only about 400

times; thus (20) is 1.48 for p = .01 with this truncation point.  mse
p

For each sample size and truncation point, 200 N-samples yielding MSE ratios in the

interval [.99, 1.01] are generated; N-samples yielding MSE ratios outside this interval are

rejected.  Setting N  = 100 and N  = 2000, each of these 200 samples is then used as the samplesim rep

data for the inference algorithm to obtain N  estimates of the probability that r   >  (N), firstsim mse p
mse

for p = .05 and then for p = .01.  The largest and smallest of the middle 50 of these inference

probabilities are the endpoints of the empirical 50% inference interval for each of the 200 monte

carlo simulations.  Since the true probability that r   >  (N) is p, the estimated coverage ofmse p
mse

this 50% interval is the fraction of these 200 50% inference intervals which contain p.

This process is then repeated, this time retaining only those N-samples whose sample

MAE ratio is in [.99, 1.01] and computing the coverage of the 50% inference interval for the test



     Similar results are obtained for p = .10 and p = .20.  It seems likely that the coverage at N = 10 would be better for9

data which is more weakly autocorrelated.
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that r   >  (N).  The coverage results are not sensitive to minor changes in the sample MSEmae p
mae

or MAE intervals for which starting samples are retained, but the coverage of the empirical 50%

inference interval for the MSE ratio test is sensitive to whether the starting samples were

conditioned on the observed MSE ratio or on the observed MAE ratio, and similarly for the MAE

ratio test.  This conditioning is necessary because the algorithm is bootstrapping the distribution

of the sampling error factors (r / r , in the notation of Figure 1) rather than the distribution of^ t r ue
j 37

sample ratio itself, r .  Indeed, when the algorithm is modified to bootstrap the distribution of the^
j

sample ratio itself rather than the distribution of its sampling error ratio, the coverage of the

resulting (much wider) empirical 50% inference intervals is correct if and only if this conditioning

is dropped.

Table 1 summarizes the coverage estimate results for the 1% and 5% tests on MSE and

MAE ratios.  These estimates are approximately normally distributed around .50 with a standard

deviation of {.5(1 - .5)/200}  with 200 monte carlo trials, so values in the interval [.43, .57] are.5

insignificantly different from .50; values outside this interval are shaded in the tables.  Evidently,

N = 20 is sufficient for both distributions and truncation points, but N = 10 is not.9

Aside from the original sample data, the user need only specify the orders of the lag

structures in the VAR model of Equation 1.  The consequences for the coverage of the 50%

inference interval of mistakenly choosing too large or too small an order are examined in the

monte carlo simulations reported in Table 2.  The “over-elaborate” rows of Table 2 correspond to

incorrectly including y  in the equation for y; the “under-elaborate” rows correspond to t-2 t

incorrectly omitting the y  term from this equation.  The true data generating mechanism,t-1



     The pair of “over-elaborate” results with N=20 on the MAE ratio test for which the coverage appears to deviate10

significantly from .50 are entirely consistent with chance given the number of cells in the “correct” and “over-elaborate”
rows of Table 2.
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Table 1

Coverage of 50% Interval

Gaussian Data Truncated at ± k       200 monte carlo trials

N = 5 N = 10 N = 20 N = 40

k test p = .05 p = .01 p = .05 p = .01 p = .05 p = .01 p = .05 p = .01

3 MSE .085 .145 .410 .405 .455 .460 .495 .500

3 MAE .100 .110 .320 .315 .445 .445 .500 .495

.5 MSE .100 .125 .480 .445 .525 .495 .550 .555

.5 MAE .110 .085 .430 .375 .475 .475 .540 .500

 Equation 2, is of course unchanged.  As might be expected, this modest amount of over-

elaboration is fairly inconsequential, whereas under-elaboration results in significant coverage

distortions.10

Finally, a bivariate VAR model is estimated using the sample data each time this inference

procedure is applied.  This model is used to generate N  starting samples, so a total of 1 + Nsim sim

bivariate VAR models are estimated.  The simulation results reported in the last row of each

section of Table 2 demonstrate that, if left untreated, small-sample bias in the OLS parameter

estimates for these models yields substantial distortions in the resulting inference intervals.  As

implemented here, the bias correction procedure is a two step process.  First, the bias in each

coefficient estimator is estimated by using the model estimated using OLS to generate 100 new

samples, estimating a model for each, and computing the average discrepancy in the slope
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estimates.  The resulting bias estimates are then added onto the original OLS estimates, the

intercepts are adjusted to force the sample mean of the fitting errors to zero, and 100 more

samples are generated, yielding an improved estimate of the biases.

Overall, the monte carlo simulation results indicate that the inference procedure works

quite well for N  20.   It might be possible to use the procedure with even smaller sample sizes

by tuning the bias correction procedure, but this has not been established.

Table 2

Coverage of 50% Interval

Gaussian Data Truncated at ± 3       200 monte carlo trials

MSE ratio test MAE ratio test

N = 20 N = 40 N = 20 N = 40

p = .05 p = .01 p = .05 p = .01 p = .05 p = .01 p = .05 p = .01

correct
specification .455 .460 .495 .500 .445 .445 .500 .495

over-elaborate
VAR .465 .440 .495 .485 .415 .385 .535 .545

under-elaborate
VAR .240 .220 .315 .300 .245 .220 .275 .245

without bias
correction .340 .315 .355 .370 .245 .230 .390 .380



     Or in both directions, yielding a feedback relationship.11

     Note that "nested information sets" can and often do lead to non-nested forecasting models.  Indeed, that is the case12

for the two AGS models (AC.2 and A.1) whose postsample forecasting errors are analyzed below.
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5. An Illustrative Example: Testing for Granger-Causation 

Between Advertising and Aggregate Consumption Spending

Ashley, Granger and Schmalensee (1980) addresses two related questions.  The first is a

substantive empirical issue: do fluctuations in aggregate advertising expenditures Granger-cause

fluctuations in aggregate consumption spending or does the causal relationship run in the other

direction?   AGS describe the creation of a new aggregate advertising expenditures time series11

which can be brought to bear on this question.  The second question is methodological: how can

hypotheses about Granger causation between a pair of time series be tested most effectively? 

Here AGS break new ground by proposing a test of the Granger-causation between two time

series based on an explicit comparison of the postsample forecasting effectiveness of models for

each series based on nested information sets.   12

In particular, suppose that the postsample forecasts of aggregate consumption spending

generated by a forecasting model making optimal use of an information set including information

on past aggregate advertising expenditures are demonstrably superior to those of an optimal

model based on an otherwise-identical information set excluding past aggregate advertising

expenditures.  Then, so long as these information sets are sufficiently wide as to include any third

variable which affects both consumption and advertising, AGS would conclude that aggregate

advertising expenditures Granger-cause aggregate consumption spending.  Thus, they reduce the

analysis of Granger-causation to an assessment of whether one model for consumption spending

provides better postsample forecasts than the other.  

In fact, AGS find no evidence that aggregate advertising expenditures Granger-cause
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aggregate consumption spending.  They do, however, find that including past aggregate

consumption spending in the information set for constructing a model to forecast aggregate

advertising expenditures is quite helpful, reducing the postsample mean square forecasting error

by 26% over the twenty period postsample period, 1970I to 1975IV.  AGS propose a procedure

for testing whether this MSE reduction is statistically significant but, as with virtually all

postsample inference methods, their procedure is only valid in large samples.  Consequently, with

such a short postsample forecasting period, uncertainty as to the small-sample adequacy of their

test substantially diminishes the additional credibility gained from assessing the relative forecasting

effectiveness of the models over a postsample period.

Applying the inference procedure described in Section 3, let y denote the one-step-aheadt

postsample forecast errors from the model for advertising expenditures based on the wider

information set (including past values of aggregate consumption spending); this is the ARMAX

model denoted AC.2 (AGS, p. 1161); and let x denote the postsample forecast errors made byt

model A.1 (AGS, p. 1159), which excludes past consumption spending from its information set.  

Then  = Prob{r  1} is the significance level at which the null hypothesis that consumption

spending Granger-causes advertising can be rejected.  Depending on one's loss function with

respect to forecast errors, r might be any one of the relative accuracy criteria given in Section 3:

r  or r  or r  or r .MSE MAE ASY DM

Time plots of x and y  both look reasonably covariance stationary.  In particular, neithert t

series appears to be trended in either mean or variance.  Both series appear to be serially

correlated, however.  OLS regression yields:



xt 7.38
(1.12)

.032
( .11)

xt 1 .452
(1.52)

xt 2 t R 2 .134
DW 1.92

yt .76
( .14)

.332
(1.23)

yt 1 .428
(1.53)

yt 2 t R 2 .193
DW 1.61
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                               (2)

where the figures in parentheses are estimated t ratios and both fitting error series appear to be

serially uncorrelated.  Formal hypothesis testing using these estimated t ratios is surely not

justified with such small samples, but they still have value as descriptive statistics.  On this basis

the coefficients on x  and y  are hardly compelling, but since these coefficient estimates aret-2 t-2

negative for a variety of sub-samples and since the coverage of the empirical 50% inference

interval is known to be sensitive to under-elaboration but insensitive to modest over-elaboration in

the VAR model specification, the orders of the lag polynomials (B) and (B) in Equation 111 22

are set to two. 

Table 3 summarizes the results.  The “Sample r ratio” figure of .738 for r  re-states theMSE

observation, noted above, that including past consumption spending in the information set for

forecasting advertising expenditures yields a 26% reduction in the observed postsample MSE. 

Thus, r < 1 is evidence for consumption Granger-causing advertising.  In fact, the sample ratios

based on all four criteria are less than one  the question is whether or not they are significantly

less than one.

The inference procedure given by AGS indicates that this postsample MSE reduction is

significant at the 9% level; AGS interpret this as modest evidence that consumption spending

Granger-causes fluctuations in advertising expenditures.  However, the inference procedure given



     The Diebold-Mariano S  statistic (a unit normal under the null hypothesis of zero expected loss differential) is .58513
1

for this data set.  Their recommended truncation lag {S(T)} is zero here since (x , y ) are one-step-ahead forecast errors;t t

consequently,  2 f (0) is just the sample variance of the average loss differential in this case.d
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by Diebold and Mariano (1995) indicates that the observed expected loss differential is

significantly negative (so that r < 1) at only the 27.8% level.   These results disagree, but sinceDM 
13

there are only twenty observations and both procedures are justified only in large samples, it

seems inappropriate to give much credence to either result.

The boostrap-based inference procedure described above was applied to these data using

N  = 100 and N  = 2000; these calculations tied up a desktop computer for about five minutes. sim rep

The median inference level exceeds .20 for all four criteria, suggesting that the 9% result obtained

by AGS is an artifact caused by the small sample size.  But this median inference is again the

result of an asymptotically justified procedure applied to a sample of only twenty observations. 

Consequently, it is not by itself any more credible than the results obtained using the AGS or

Diebold/Mariano procedures.

However, the bootstrap-based inference procedure settles the matter by explicitly

quantifying the uncertainty in the median inference due to the small sample size.  In particular, for

the test on r , half of the N   = 100 generated starting samples yield bootstrap significanceMSE sim

levels in the interval [.176, .268].  Thus, it is reasonable to conclude that the postsample MSE

drop observed by AGS is only significant at the 18% to 27% level and to therefore reject the AGS

assertion that they have obtained evidence for fluctuations in consumption spending Granger-

causing fluctuations in advertising expenditures at the 10% level of significance   their evidence

is now demonstrably weaker than this.
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Table 3

Inference Results Using Postsample Forecast Errors from 

AGS(1980) Models for Aggregate Advertising Expenditures

r r r rMSE MAE ASY DM

Sample r ratio .738 .934 .803 .877

Asymptotic test significance level .092 unknown unknown .278

Bootstrap inference results:   

Median of N  inferences  (Q ) .237 .388 .319 .337sim .50

Empirical 50% interval  [Q  , Q ] [.176, .268 [.350, .419] [.266, .348] [.341, .368].25 .75

Sample ratio needed for 5% result .58 .73 .55 .65
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6. Conclusions

The postsample inference procedure proposed here

 avoids the pre-test biases which data mining induces in insample tests,

 allows for the contemporaneous crosscorrelation and serial dependence commonly found in

postsample time series data, and

  yields inferences which are reasonably credible, even for the small samples typically

available for postsample inference, by explicitly quantifying the uncertainty in the

inference introduced by the bootstrap approximation itself.

However, now that it is possible to take postsample inference more seriously, it is no longer either

necessary or proper to remain vague about the amount of postsample data which is needed for

effective inference.

For example, the results given in Table 3 of Section 5 clearly indicate that the 26% MSE

improvement obtained by AGS (1980) over a twenty quarter postsample period is simply not

significant at even the 10% level.  By repeating these calculations to test the null hypothesis that 

r     for values of  increasingly larger than one it is possible to explicitly estimate how large anmse

MSE improvement would have sufficed in this case to yield a 50% inference interval containing .05. 

Such results are reported in the last row of Table 3; they show that an MSE improvement of over

40% or an MAE improvement of over 30% is needed, given the distribution and the correlation

structure of these data.

Alternatively, the length of the generated samples can be increased until a desired level of 

inferential precision is achieved.  Such calculations, reported in Ashley (1992), indicate that a
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postsample model validation period must typically be twenty five to forty five periods long in order

to detect a 30% MSE drop at the 5% level of significance, or fifty to one hundred periods long to

detect a 20% MSE drop.  

Thus, a model which cannot provide at least a 30% MSE improvement over that of a

competing model is not likely to appear significantly better than its competitor over postsample

periods of reasonable size.  And evidently the five to twenty periods that have in the past been

allocated to postsample model validation/inference (when it was done at all) are quite inadequate to

detect the modest postsample MSE reductions one ordinarily sees.  Yet retention of a postsample

model validation period much in excess of thirty to forty periods seems rather impractical in many

econometric contexts.

One resolution of this dilemma is to explicitly recognize that, since experience indicates that

postsample forecasting is quite a stringent test of the extent to which a model has captured a stable

statistical regularity,  perhaps we should be satisfied with postsample MSE or MAE improvements

which are significant at the 10% or even the 20% level.  This is analogous to our shared perception

that a reasonable R  for a model estimated on cross-sectional data is substantially lower than that for2

a model estimated on time series data.  Another possibility is to revise upward our estimate of the

relative importance of model validation and to therefore allocate a substantially larger portion of the

available data to a postsample model validation/inference period, perhaps pooling the data at the end

once model choice/model validation is complete.

Still, if postsample model validation/inference requires more data than we have heretofore

been willing to allocate to it in order to yield reasonably definitive results, then why do it at all? 

Perhaps the best response to this question is: "because the alternative approach of insample model
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validation/inference, over the same data used for specifying and estimating the model, makes it too

easy to obtain supportive results."  

It may well be that this is the principal reason why the economics community has produced

and used so many badly-misspecified models.  Had we been willing and able  through the use of

tools such as the inference procedure proposed here  to routinely confront our models with an

effective postsample model validation hurdle, I believe that we would have produced a significantly

smaller number of econometric models and a significantly larger amount of actual progress in the

resolution of both theoretical and applied economic controversies.
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