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Abstract Credible inference requires attention to the possible fragility of the results
(p values for key hypothesis tests) to flaws in the model assumptions, notably account-
ing for the validity of the instruments used. Past sensitivity analysis has mainly con-
sisted of experimentation with alternative model specifications and with tests of over-
identifying restrictions which actually presuppose instrument validity. We provide a
feasible sensitivity analysis of two-stage least-squares andGMMestimation, quantify-
ing the fragility/robustness of inferencewith respect to possible flaws in the exogeneity
assumptions made, and also indicating which of these assumptions are most crucial.
The method is illustrated via application to a well-known study of the education–
earnings relationship.
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1 Introduction

The practice of econometrics begins with the specification and estimation of a model,
or several models; it should then focus on assessing how the assumptions made impact
the inferential results of greatest interest. This assessment can address functional form
variants, additional covariates, alternative estimation methods and so forth; here we
focus on the validity of the exogeneity assumptionsmade in the context of instrumental
variables estimation and inference. This assessment process is a sine qua non for
careful empirical work.

The present work is a generalization of a sensitivity analysis framework originally
proposed in Ashley (2009), which addressed the robustness of an inference p value
based on an exactly identified instrumental variables model with respect to instrument
validity failures. Here we extend the reach of this type of sensitivity analysis to 2SLS
and GMM model estimation. By ‘inference p value’—here, and below—we mean
the p value at which some null hypothesis of interest can be rejected; quite often, the
main thrust of an empirical study is to test just one or two such hypotheses. Thus,
the new version of this approach proposed here is applicable to a far wider class of
econometric circumstances.

The basic idea here is to examine the sensitivity of key inference p values to a
comprehensive set of explicit potential flaws in the exogeneity assumptions underlying
2SLS and GMM estimation/inference and to thereby explicitly quantify the degree to
which the results one cares aboutmost are robust (or fragile) with respect to reasonably
likely departures from these assumptions. Specifically, how large a correlation between
one or more of the instruments (or first-stage variables) and the original (structural)
model errors is sufficient to overturn the statistical significance of a particular inference
of interest? And does the fragility lie more with respect to flaws in one of the first-stage
variables (instruments) or another?

More specifically, our sensitivity analysis works as follows. Suppose that the
main point of the analysis is the finding that a particular null hypothesis can be
rejected at, say, the 5% level. And, for expository clarity only, consider the case
where just one instrument (‘z’) used in the model estimation is possibly flawed.
Thus, corr(z, u) is thought to possibly be nonzero, where u denotes the model struc-
tural error. The value of corr(z, u) is, of course, unobservable. For any given value
of the covariance cov(z, u), however, we can obtain a consistent estimate of the
sampling distribution of the model parameters, consistent estimates of the model
parameters themselves and a concomitant consistent estimate of the variance of
u. Conditional on this given value for cov(z, u), this resulting estimated sampling
distribution yields an asymptotically valid rejection p value for the null hypothe-
sis of interest, and this estimate of the variance of u yields a consistent estimate
of corr(z, u). By randomly drawing a large number of values for cov(z, u), we
are thus able to numerically delineate exactly how flawed the instruments need to
be—as quantified by corr(z, u)—in order to overturn the finding that the original
null hypothesis of interest can be rejected at the 5% level. If this value of corr(z,
u) is small in magnitude, then the original inference is ‘fragile’ with respect to
instrument flaws, whereas this inference is ‘robust’ if the magnitude of corr(z, u)
is substantial.
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Sensitivity analysis 1155

We should note here that our proposed sensitivity analysis differs from existing
econometric approaches that allow for violations of the requisite exogeneity condi-
tions necessary to have a valid instrument. A non-exhaustive list includes Hahn and
Hausman (2006) and Berkowitz et al. (2008a) who impose a condition of ‘near exo-
geneity’ on the instrument-error correlation that ensures that the finite-sample correla-
tion, while nonzero, is vanishingly small—i.e., of order 1/

√
n, where n is the sample

length. This type of condition has been termed ‘local-to-zero’ correlation. Berkowitz
et al. (2008b) assume that the instrument-error correlation is nonzero and vanish-
ingly small—although not of order 1/

√
n as in Berkowitz et al. (2008a)—and provide

a data-driven resampling scheme to compute confidence intervals for the structural
parameters of interest; this eliminates the need for a specific distributional assumption
on the instrument-error correlation. However, a key concern with these local-to-zero
approaches is: why is it reasonable to think that a larger quantity of sample data makes
one’s instruments any less flawed?1

The plan of the paper is as follows. Section 2 discusses why sensitivity analysis
is an integral part of sound econometric research. Section 3 derives the straightfor-
ward modification of GMM (and 2SLS) analytics needed for the sensitivity analysis
proposed here. Section 4 details precisely how to implement the proposed sensitivity
analysis in practice. The application of this algorithm is then illustrated with several
examples in Sect. 5. Section 6 summarizes the results and provides concluding remarks
on the proposed sensitivity analysis.

2 Why sensitivity analysis?

Angrist and Pischke (2010) recently reviewed the practice of econometrics as devel-
oped following the seminal work of Leamer (1983), which called attention to the lack
of credible econometric work being done at that time. They note that Leamer’s (1983)
recommendation of sensitivity analysis is no longer the only feasible way to lend
credibility to empirical analysis, as important data sources based on organized and/or
‘natural’ experiments are now becoming available to an extent that he did not envis-
age (Angrist and Pischke 2010). Empirical analysis of non-experimental data can be
seen as a complementary approach to the standard practice of conducting sensitivity
analysis to the assumptions imposed in applied econometric work. However, we—in
common with Stock (2010)—still see a hugely important role for sensitivity analysis
with respect to the assumptions necessary for analyzing empirical data. Many of these
assumptions aremade in examining experimental data as well, as pointed out byKeane
(2010b).

Subsequent to Leamer’s (1983) biting criticism of the then-current practices in
applied econometric work, the profession’s response has been threefold. One response
has been the development and widespread adoption of robust standard error estimators

1 In a Bayesian context, Conley et al. (2007) and Kraay (2008) provide methods for working with instru-
ments that do not fully satisfy the knife-edge orthogonally condition; these authors assume that the instru-
ments are nearly exogenous and attach Bayesian priors to the correlation parameters. Other approaches in
the literature includeMurray (2006), Ebbes et al. (2009) and Small (2007). See Ashley and Parmeter (2013)
for a more detailed literature review.
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(White-Eicker and HAC), so as to make the analysis more resilient with respect to
failures in some of the key model assumptions. The use of these methods has become
increasingly feasible as typical sample sizes have grown. However, it should be noted,
these methods have also handed analysts a perceived freedom to ignore the misspec-
ification signals provided by heteroscedasticity and/or serial correlation in the model
error term: neglected dynamics in the case of serial correlation and neglected nonlin-
earity (and/or neglected heterogeneity) in the case of heteroscedasticity.2 A second
response has been the use of ‘extreme bounds’ sensitivity analysis, which amounts to
asking whether one’s conclusions are robust with respect to trying out a variety of dif-
ferent covariates. This approach suffers from a fundamental flaw: The meaning of all
of the population regression coefficients are contingent on the set of conditioning vari-
ables used. Inference stability with respect to such variation in the model specification
is therefore irrelevant to the issue of the validity of the econometric assumptions and,
in particular, the exogeneity assumptions underlying the inferences made in the orig-
inal model. And, while instability with respect to variation in the instrument choices
can be meaningful, it is very difficult to interpret; in particular, such instability does
not necessarily imply that any of the instruments are invalid.

Finally, analysts now routinely make tests of the over-identifying assumptions in
their models. However, per Keane (2010a, footnote 10) and Angrist and Pischke’s
(2010) comments [see also Stock’s (2010) rejoinder to Angrist and Pischke], it is
essential to note that the validity of any test of the over-identifying restrictions is still
conditional on the assumed validity of the exogeneity assumptions made. If such a test
rejects the null hypothesis that the over-identifying restrictions are correctly specified,
this result only implies that something is misspecified, but it is not at all clear what,
whereas if such a test fails to reject its null hypothesis, then—as with any hypothesis
test—it is not really possible to draw any conclusion at all.

3 Estimation and inference with explicitly flawed exogeneity assumptions

The sensitivity analysis proposed here extends the work of Ashley (2009) by allowing
for over-identification in IV models. While the approach can be easily extended to
the setting of a nonlinear model, for expositional clarity the sensitivity analysis is
described in the remainder of this section (and applied in Sect. 5) for the special case
of a linear structural model with potentially heteroscedastic and/or serially correlated
errors.

Consider, then, the standard linear model, with the structural equation

Y1 = Y2α + Z1β + ε, (1)

where Y2 is an n × g matrix of other endogenous variables, Z1 is an n × k matrix of
exogenous variables, α and β are g× 1 and k × 1 vectors of coefficients, respectively,
and ε is the n × 1 matrix of structural errors. Z2, an n × j matrix of additional,
purportedly exogenous, instrumental variables is assumed to be available, which—if

2 See Sims (2010, pp. 66–67) with respect to the heterogeneity issue.
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these instruments are valid—can be used to correct for the endogeneity of Y2, thereby
providing consistent estimates ofα andβ. It is assumed here that j ≥ g, corresponding
to either exact identification ( j = g) or over-identification ( j > g).

Accordingly, consistent least-squares estimation of Eq. 1 requires that the k condi-
tions

E
[
Z ′
1iεi

] = 0 (2)

and the j instrument validity conditions

E
[
Z ′
2iεi

] = 0, (3)

hold for all i ∈ [1, n]. The condition in Eq. 2 incorporates the assumed exogeneity
of the k variables in Z1. The condition in Eq. 3 specifies that the j instruments are
valid—i.e., uncorrelated with ε; this, of course, is equivalent to assuming that the j
variables that compose Z2 are actually exogenous.

Here, however, the point of the exercise is to obtain estimators for the case where
one or more of the j instruments are flawed, i.e., not exogenous. In that case, Eq. 2
still holds, but Eq. 3 is modified to become

E
[
Z ′
2iεi

] = Σ ′
Z2ε

�= 0, (4)

for all i .
Letting γ ′ = [α′ β ′] and X = [Y2 Z1], Eq. 1 can be written more compactly as:

Y1 = Xγ + ε. (5)

And, letting Z = [Z1 Z2], the parameter vector γ in Eq. 5 can now be estimated via
GMM, by minimizing:

[

n−1
n∑

i=1

(
Z ′
i ε̂i − Σ ′

Zε

)
]′

Ŵ−1

[

n−1
n∑

i=1

(
Z ′
i ε̂i − Σ ′

Zε

)
]

, (6)

over γ̂ where ε̂i = Y1i − Xi γ̂ and the subscript i denotes the i th row of the matrices
Z , Y1, and X defined above. Then, under the usual GMM assumptions, e.g., as given
in Wooldridge (2010, Theorems 14.1 and 14.2),

γ̂ flaw = (X ′ZŴ−1Z ′X)−1X ′ZŴ−1 (
Z ′Y1 − nΣ ′

Zε

)
, (7)

and the asymptotic sampling distribution of γ̂ flaw for given W and ΣZε is:

√
n(γ̂ flaw − γ )

d→ N

(
0,

(
X ′ZŴ−1Z ′X

)−1 B
(
X ′ZŴ−1Z ′X

)−1
)

, (8)
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where

B = X ′ZŴ−1ΛŴ−1Z ′X (9)

and

Λ = E
[(
Z ′
iεi − Σ ′

Zε

) (
Z ′
iεi − Σ ′

Zε

)′]
. (10)

Estimating the sampling distribution of γ̂ flaw is now straightforward, as a consistent
estimator of Λ is given by:

Λ̂ = n−1
n∑

i=1

(
Z ′
i ε̂i − Σ ′

Zε

) (
Z ′
i ε̂i − Σ ′

Zε

)′
, (11)

where ε̂i is any consistent estimator of the structural error, εi . Substituting Ŵ = Z ′Z
into Eq. 7, then yields:

γ̂ 2SLS−flaw =
(
X ′Z(Z ′Z)−1Z ′X

)−1
X ′Z(Z ′Z)−1 [

Z ′Y1 − nΣ ′
Zε

]
, (12)

which is labelled ‘2SLS’ here because it reduces to the usual 2SLS estimator of γ in
the special case of valid instruments, where Σ ′

Zε is zero. The fitting errors implied by
γ̂ 2SLS−flaw—i.e., Y1 − X γ̂ 2SLS−flaw—are analogously denoted ε̂2SLS−flaw below. The
estimator γ̂ 2SLS−flaw is a consistent estimator of γ for a given value of the instrument
flaw covariance vector (as shown above for any choice of Ŵ) and also asymptotically
normal. But it is not asymptotically efficient, because Ŵ = Z ′Z is not the optimal
weighting matrix.

The optimal weighting matrix is obtained, as usual, on a second pass, setting
Wopt = Λ̂ from Eq. 11, substituting ε̂2SLS−flaw for ε̂. Because Ŵ now equals Λ̂,
Eqs. 7 and 8 through 11 now yield what we will call γ̂GMM−flaw and its estimated
sampling distribution:

γ̂GMM−flaw =
(
X ′ZΛ̂−1Z ′X

)−1
X ′ZΛ̂−1 (

Z ′Y1 − nΣ ′
Zε

)
(13)

and

√
n(γ̂GMM−flaw − γ )

d→ N

(
0,

(
X ′ZΛ̂−1Z ′X

)−1
)

, (14)

for any specified value of Σ ′
Zε. This estimator is preferable to γ̂ 2SLS−flaw because—

per Wooldridge (2010) and Hall and Inoue (2003)—it is asymptotically efficient. We
therefore use γ̂GMM−flaw in the illustrative examples in Sect. 5 below; we note, how-
ever, that the sensitivity analysis proposed here in no way requires efficient parameter
estimation.
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It is then straightforward, using the estimated asymptotic sampling distribution of√
n(γ̂GMM−flaw−γ ) given in Eqs. 13 and 14, to calculate the rejection p value for any

specific null hypothesis regarding the components (or functions of the components)
of the structural parameter (γ ), predicated upon any given value of the instrument
flaw covariance vector, ΣZε. The next section lays out how this result can be used to
quantify the fragility (or robustness) of this particular rejection p value with respect
to possible flaws in the instruments.

4 Implementation of the sensitivity analysis

In the description below, it is supposed (for expositional clarity) that a particular null
hypothesis regarding γ has been rejected at the 5% level, based on the usual 2SLS or
GMM estimator and that the question at issue is how sensitive this result is to flaws
in the exogeneity of one or more of the j variables in Z2, leading to a failure in the
population moment conditions given in Eq. 4 above as E

[
Z ′
iεi

] = Σ ′
Zε �= 0.3 Below,

the number of instruments being analyzed is denoted ‘m’, but all k exogenous variables
and all of the j ‘actual’ instruments are, of course, always used in the estimation of
Eq. 1.

Recalling that the k + j-vector Σ ′
Zε is the population covariance between the

instruments and the model error term in Eq. 1, the sensitivity analysis consists of the
following steps:4

1. Values for the m nonzero components of the instrument-error covariance vector
ΣZε are randomly generated as an independent drawing from the multivariate nor-
mal distribution5 withmean zero and variance-covariancematrix equal to σ 2 times
the sample variance-covariance matrix of the m relevant variables; σ 2 is initially
set equal to s2, the sample estimate of the variance of ε under the assumption that
the instruments are unflawed. The value of σ 2 is adjusted as needed at a later stage;
this adjustment is described below, at the end of step 4.

2. Contingent on this value ofΣ ′
Zε , theGMMparameter estimate (γ̂GMM−flaw) and its

sampling distribution are then obtained from Eqs. 11 to 14. Based on this sampling
distribution, the new p value for the null hypothesis of interest is then calculated.

3. Also contingent on this value of the instrument-error covariance vector Σ ′
Zε,

γ̂GMM−flaw provides a consistent estimator of γ for use in calculating Y1 −

3 The analysis would be essentially identical for a rejection at the 1% (or any other) level: The description
in this section is made definite for the 5% level solely to enhance the clarity of the exposition. Similarly, the
procedure described below can be readily modified to instead analyze the case where the null hypothesis is
not rejected at the 5% level and the issue is whether this failure to reject is due to a flaw in the exogeneity
conditions, or where the null hypothesis is either joint or a nonlinear function of γ .
4 This algorithm is implemented in R code (available from the authors), but the entire process is readily
programmed in any matrix-oriented computer language.
5 The multivariate normal distribution is used here for computational convenience only; the sensitivity
analysis results are themselves insensitive to the alternative use of a diagonal variance-covariance matrix
or even a different distribution (e.g., Wishart) entirely. Indeed, the instrument-error covariance vectors are
randomly selected solely to sample the m-dimensional space in a computationally straightforward fashion.
Non-random selection over a sufficiently dense grid would yield the same results with a sufficiently large
number of drawings, but the computational burden of such a grid search does not scale well with m.
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X γ̂GMM−flaw, which are asymptotically equivalent to the structural model errors,
ε. The sample variance of these fitting errors is thus a consistent estimator of the
variance of ε. This estimate is then used (along with the sample variances of the
instruments) to convert the instrument-error covariance vectorΣZε into a vector of
instrument-error correlations, which aremore interpretable than the corresponding
covariances.

4. The foregoing calculation is not computationally burdensome, so it is quite feasi-
ble to repeat it for a large number (Mrep) of randomly drawnΣZε instrument-error
covariance vectors, at each such repetition generating a p value for the null hypoth-
esis being analyzed and the associated vector of m instrument-error correlations.
These m instrument-error correlations are written out to a ‘results’ file for each
repetition generating a p value larger than 0.05—i.e., at each repetition for which
the flaws in the instruments corresponding to ΣZε have ‘overturned’ the original
inference result, assumed (at the beginning of this section) to be significant at the
5% level. If the original inference result was a failure to reject the null hypothe-
sis at the 5% level, then this m-vector of implied instrument-error correlations is
written out only for the repetitions in which the p value is smaller than 0.05.
A reasonable value must be specified for σ 2, the variance of the distribution used
to randomly generate the ΣZε vectors, so that the calculations make good use
of the Mrep repetitions. If σ 2 is set too small, then an unnecessarily large value
of repetitions is needed in order to generate a substantial ‘sample’ of inference
overturns, whereas if σ 2 is set too large, then an unnecessarily large value of
repetitions is needed in order to generate a sufficiently large number of inferences
which are barely overturned. The value chosen for σ 2 is itself inconsequential, so
long as Mrep is set large enough that the sensitivity results—e.g., the values of rmin
discussed in the next step—are themselves insensitive to a repeat of the analysis
with a new seed for the random number generator. In practice, we find that the
sensitivity results are essentially invariant to the value chosen for σ 2—over several
orders of magnitude—when Mrep is set in the range of 104–105. Consequently,
we simply choose σ 2 to be sufficiently large as to yield at least several inference
overturns with 1,000 repetitions. We then divide this value of σ 2 by ten, raise Mrep
to 104–106 (depending on the size of m) and check to make sure that the results
are robust to a repeat of the calculation with a new seed for the random number
generator.
Where the value of m exceeds one—i.e., where possible flaws in more than one
instrument are being analyzed—then it is very useful to define r as the length of
this vector of instrument-error correlations for each repetition and to write it to the
‘results’ file also. These length values facilitate the condensation and descriptive
characterization of the results, described in the next step.6

5. This collection of Mrep calculated (m+1)-vectors—each of which consists of the
vector of m instrument-error correlation components and its length (r)—can then
be analyzed in several ways:

6 Our code uses the Euclidean norm—the square root of the sum of the squares of the m components—for
this length measure. While obviously not the only possible choice, this norm emphasizes the importance of
the components which are largest in magnitude, which likely contributes to descriptive clarity.
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(a) The first thing to look at is rmin, the minimal value of r. What is the smallest
instrument-error correlation vector length for which the null hypothesis is no
longer rejected?

(b) Next, it is useful to also tabulate r0.01 . . . r0.20, where r0.20, for example, is
the length of the instrument-error correlation vector such that 20% of all the
repetitions leading to an ‘overturn’ of the original inference result are due to
instrument-error correlation vectors no larger than this. These statistics address
the question: What is the smallest instrument-error correlation vector length
for which the original inference is overturned with some frequency?7

(c) The sensitivity analysis results can also be displayed graphically. The most
useful ways in which this can be done are best illustrated in the empirical
examples given in the next three sections, but they are described here, for
completeness:
i. First, in the special case where just two instrument-error covariances are

beingvaried—i.e.,wherem equals two—it is both feasible and informative
to simply plot a few thousand of these (two-dimensional) instrument-
error correlation vectors for which the inference was ‘overturned,’ one
component against the other.

ii. Second, it is always feasible (and usually informative) to plot what might
be called an ‘Empirical Cumulative Distribution Function’ or ‘ECDF’
of the lengths of the instrument-error correlation vectors corresponding
to overturns of the original inference. The height of this plot is zero
for instrument-error correlation vector lengths less than rmin, its height
reaches 0.01 for length equal to r0.01, its height reaches 0.05 for length
equal to r0.05, and so forth.

(d) Finally, it is useful to examine the pattern of them components of the vector of
the instrument-error correlations corresponding to rmin. If there is, in fact, some
fragility to this inference regarding γ , then the pattern in these components
points at which instruments are the primary sources of this fragility and which
are not.

The next section illustrates the nature and usefulness of this sensitivity analysis
algorithm via two examples. The first example uses artificial data generated by a
very simple ‘macroeconomics-like’ system of simultaneous equations in which two
of the three instruments are actually flawed. Two inferences with regard to the key
structural coefficient in this model are analyzed. Under the usual assumption of valid
instruments, one of these null hypotheses is rejected at the 5% level and the other is
not; but both inferences turn out to be fairly fragile with respect to instrument flaws.
The next example is a replication of a well-known empirical study drawn from the
labor economics literature—and its key inference result turns out to be arguably quite
fragile. Based, in part, on these examples, the paper closes with some thoughts on how
one might sensibly assign the subjective words ‘fragile’ and ‘robust’ to the objective

7 The value of r0.01 is essentially equivalent to that of rmin for all practical decision making as to the
robustness or fragility of an inference result, but r0.01 has much better sampling properties than does rmin.
That is, computed values of r0.01 become independent of the random number generator seed for much
smaller values of Mrep.
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results produced by the algorithm described in this section and with some comments
on the practical value of these subjective and objective results.

5 Illustration of the method

5.1 Illustrative example using simulated data

In this section, an example using simulated data illustrates how the sensitivity analysis
procedure described above can be applied to evaluate the degree to which particular
model inferences (hypothesis tests on a structural parameter) are sensitive to likely
defects in the exogeneity assumptions made—i.e., to flaws in the instruments used.

Three hundred observationswere generated from the simultaneous equationmodel,

ci = 0.8yi + 0.7di + εi,1 (15)

yi = 0.7ci + 0.5xi + 0.6wi + 0.2qi + εi,2, (16)

where εi,1 and εi,2 are both uncorrelated and generated (independently from one
another) as niid(0,2) variates. The structural coefficient on yi is denoted β below;
the value of β is 0.80 for the data generated by Eqs. 15 and 16. The explanatory
variables di and xi are independently generated as niid(0,1) variates and are hence
exogenous. In contrast—so as to make them flawed instruments for yi in Eq. 15—the
variables wi and qi are generated from

wi = 0.063εi,1 + νw
i (17)

qi = 0.063εi,1 + ν
q
i , (18)

with νw
i and ν

q
i independently distributed as niid(0,1) variates; the particular linear

relationships imposed in Eqs. 17 and 18 induce a correlation of 0.089 between εi,1
and each of wi and qi .

The structural equation for ci , was then estimated, specifying the use of xi , qi ,
and wi as instruments for yi ; the exogenous explanatory variable (di ) is, as usual,
automatically also included as an instrument. While wi and qi are flawed because of
their correlation with εi,1, these two instruments are not weak: the sample correlations
of wi and qi with yi are 0.3705 and 0.2565, respectively.

Per the discussion inSect. 3, themodel is estimatedusing the 2-stepGMMestimator,
Eq. 13. The resulting estimated equation for ci is:

ci = 0.922yi
(0.033)

+ 0.507di
(0.089)

+ ηi R
2 = 0.931

s2 = 1.649
(19)

where the numbers in parentheses are estimated standard errors. Letting β̂GMM denote
the estimated coefficient on yi in Eq. 19, observe that β̂GMM exceeds its true value
(0.80) by approximately four estimated standard errors. Thus, because of the flaws in
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these two instruments, (wi and qi ), the null hypothesis Ho :β = 0.80 is (incorrectly)
rejected.

Assuming, as would be commonplace, that this sample of 300 observations is suf-
ficiently large as to allow the use of asymptotic results like Eq. 14, the sensitivity
analysis algorithm described in Sect. 4 is applied below to an assessment of the instru-
ment flaw sensitivity of two different inferences regarding the model for these data.
These inferences are simple hypothesis tests with regard to the value of the parameter
β in Eq. 15, testing the two null hypotheses: Ho :β = 0.80 (versus Ha :β �= 0.80) and
Ho :β = 0.90 (versus Ha : β �= 0.90). The null hypothesis Ho :β = 0.80 happens to
be correct, but—of course—one would not know that in practice.8

The null hypothesis Ho :β = 0.80 is (incorrectly) rejected at the 5% level and one
(incorrectly) cannot reject the null hypothesis Ho : β = 0.90 at the 5% level. With
actual data, these inferential errors could be due to poor luck; here, we know that these
inferential failures are for the most part due to the flaws in two of the instruments
used in the estimation. The sensitivity analysis results below allow one to assess the
robustness or fragility of these two inferences without already knowing that these two
instruments are flawed.

The value of m was set to two in these two sensitivity analyses, and potential flaws
in only wi and qi were considered. Sensitivity analysis results (with m equal to four)
also examining these two inferences with regard to possible endogeneity of di and
with regard possible flaws in xi as an instrument could have been obtained just as
easily, but an important objective for this first pair of examples is to illustrate the
graphical depiction of the results described in Step 5.c(i) of Sect. 4, which is limited
to the special case where m is two. An empirical example with m = 3 is analyzed in
Sect. 5.2; Ashley and Parmeter (2013) illustrates the sensitivity analysis withm = 30.

Mrep randomly selected covariance pairs—[cov(wi ,εi,1), cov(qi , εi,1)]—were gen-
erated; these correspond to the vector Σ ′

Zε in Sect. 3. Mrep was set to 10,000 for
this example, as the primary focus in this example is on the graphical display of the
sensitivity analysis results.9 Figure 1 displays all of the resulting correlation pairs
[corr(wi , εi,1), corr(qi ,εi,1)] for which the particular null hypothesis Ho : β = 0.80
can no longer be rejected at the 5% level using the GMM estimates of Eq. 19 and the
sampling distribution of Eq. 14. Figure 2, in contrast, displays all of the analogous
correlation pairs for which the null hypothesis Ho : β = 0.90 can be rejected at the
5% level.

Focusing first on Fig. 1, note that what is being plotted here are all of the generated
[corr(wi , εi,1), corr(qi ,εi,1)] pairs which are sufficiently flawed that Ho :β = 0.80—
whichwas rejected at the 5% level using β̂GMM—is no longer rejected. This set of pairs
could usefully be called the ‘No Longer Rejecting’ set of instrumental flaws. Observe
that this ‘NoLongerRejecting’ set does not include the origin,which corresponds towi

and qi both being assumed to be uncorrelated with εi,1. But it does include instrument-

8 These two examples focus on a simple hypothesis test solely for expositional clarity; the sensitivity
analysis can be applied equally well to null hypotheses involving multiple linear (or nonlinear) parameter
restrictions; see Ashley and Parmeter (2013) for an application in this direction.
9 One might want to use a larger value for Mrep in order to compute precise values for statistics like rmin;
one would surely want to use a larger value for Mrep for larger values of m.
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Fig. 1 Instrument-error correlation pairs in the ‘No Longer Rejecting’ set for testing Ho :β = 0.80 at the
5% level in the model of Eqs. 15 and 16. The cross corresponds to the pair (0.089, 0.089), the actual value
of ΣZ2ε in this example
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Fig. 2 Instrument-error correlation pairs in the ‘No Longer Not Rejecting’ set for testing Ho :β = 0.90 at
the 5% level in the model of Eqs. 15 and 16. The cross corresponds to the pair (0.089, 0.089), the actual
value of ΣZ2ε in this example

error pairs which are fairly close to the origin: the shortest ray from the origin to this
‘No Longer Rejecting’ set has a length of only 0.11; this is the ‘rmin’ defined in Step
5.a of Sect. 4. Thus, it requires a noticeable—but not all that large—set of flaws in
these two instruments in order to overturn the sample rejection of Ho :β = 0.80.

One might therefore characterize this inference as somewhat ‘fragile’ to likely
failures in these two instruments. On the other hand, looking at Fig. 1, if one had
theoretical reasons for strongly suspecting that any flaws in the instruments wi and
qi must be such as to induce a negative correlation with the structural error, εi,1, then
one could instead conclude that this inference is actually fairly robust.
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Finally, note that the instrument-error correlation vector corresponding to the
minimal-length vector reaching the ‘No Longer Rejecting’ set is (0.089, 0.061). This
result indicates that the inference regarding Ho : β = 0.80 is more or less equally
fragile to flaws in either of the two instruments analyzed, wi and qi .

Turning to Fig. 2, what is plotted here are the points in a ‘No LongerNot Rejecting’
set of instrument-error correlations, as the null hypothesis Ho : β = 0.90 is—in this
case incorrectly—not rejected in the GMM estimates. Note that the ‘empty swath’ of
points in this plot consists of the instrument-error correlation pairs for which a failure
to reject this null hypothesis still occurs. This inference (the failure to reject Ho :β =
0.90) is evidently somewhat more fragile than was the rejection of Ho : β = 0.80
analyzed in Fig. 1: here the value of rmin is only 0.086. Thus, for this second null
hypothesis, one would conclude that this inference, also, is somewhat fragile.

The vector corresponding to the minimum length ray to the ‘No Longer Not Reject-
ing’ set of instrument-error correlation is (−0.066,−0.054) for the null hypothesis
Ho :β = 0.90. Consequently, the sensitivity analysis again indicates that the inference
is more or less equally sensitive to flaws in either of the two instruments analyzed. A
‘No Longer Not Rejecting’ set of instrument-error correlations will typically look like
Fig. 2 and have an empty swathe, containing the origin, running through it. Thus, in
this instance, a theoretical presumption that any flaws in these two instruments must
lead to positive instrument-error correlations would not reduce the apparent fragility
of this inference.

Summarizing the results so far, then, the sensitivity analysis indicates that both of
these inferences are fairly fragile to potential flaws in these two instruments; this result
would alert an analyst to the likely possibility that these results could be artifacts of
instrumental flaws. Here, where we artificially know that these data were generated
in such a way that these two instruments actually are flawed—they are each, by
construction, correlated with the model errors in amount 0.089—it is not surprising
that both inferences are in fact incorrect.10

5.2 Empirical example: assessing the fragility/robustness of the Angrist and Krueger
(1991) inference to likely instrument flaws

The sensitivity analysis proposed above (and applied, in Sect. 5.1, to inferences in
a model based on artificially generated data) is of course also applicable to actual
empirical models. For example, the procedure is applied in this section to the well-
known Angrist and Krueger (1991) study testing the impact of schooling on earnings;
the original model utilizes 329,509 sample observations on US men born between
1930 and 1939 and uses 30 instruments.

10 Thus, it is appropriate that the actual correlation pair (0.089, 0.089)—denoted by ‘+’—lies outside of the
‘No Longer Rejecting’ set plotted in Fig. 1 and close to the ‘No Longer Not Rejecting’ set plotted in Fig. 2.
Also, note that the length of the actual instrument-error flawcorrelation vector [corr(wi , εi,1), corr(qi , εi,1)]
is 0.126 =

√
0.0892 + 0.0892. This length exceeds rmin = 0.11—the minimum length for an instrument-

error correlation vector to reach the ‘No Longer Rejecting’ set for no longer rejecting Ho :β = 0.80.
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The basic Angrist–Krueger model is

log(Zi ) = Xiβ1 + Y Biδ1 + ρEi + εi , (20)

where Zi is the weekly wage of the i th individual, Ei is the total years of education
of individual i , ρ represents the return to education, Xi is a vector of covariates for
individual i , and Y Bi is a 1 × 9 dummy variable vector containing a one for the
component corresponding to the year in which the individual was born and zero for
the other components.

The difficulty in estimating ρ in Eq. 20 is that unobserved taste and ability vari-
ables render Ei endogenous. Angrist and Krueger’s contribution was to note that the
interaction of school-entry requirements and compulsory schooling laws historically
forced students born in certain months to stay in school longer, on average, than stu-
dents born in other months. Angrist and Krueger therefore argued that an individual’s
birth month is correlated with his number of years of education—but uncorrelated
with these unobserved personal attributes—yielding a source of valid instruments for
Ei . In particular, Angrist and Krueger (1991) used interactions between three quarter-
of-birth dummies and 10year-of-birth dummies to create the 30 instruments alluded
to above. Bound et al. (1995) re-analyzed the Angrist–Krueger model using only the
three quarter-of-birth instruments, arguing that the full Angrist–Krueger information
set included many weak instruments; we follow Bound et al. (1995) here solely for
expositional clarity.11

Using this instrumentation strategy, the GMM estimates12 of Eq. 20 are:

ln(Zi ) = 4.592
(0.250)

+ 0.105Ei

(0.020)
+ · · · + ηi , (21)

with R
2 = 0.091 and s2 = 0.647.13 Using these instruments, Ho : ρ = 0.0 can be

rejected with p value<0.0005.Moreover, the quarter-of-birth instruments collectively
are not weak; the first-stage F-statistic for the excluded instruments is 32.269.

The actual validity of this clever Angrist–Krueger instrument choice was subse-
quently the subject of much debate: e.g., see arguments summarized in Bound and
Jaeger (1996).14 Consequentially, it is of substantial practical interest—even after a
notable passage of time—to assess whether this inference result is fragile or robust
with respect to possible flaws in these instruments.

11 See Ashley and Parmeter (2013) for the analogous sensitivity analysis using the full 30-instrument setup
of Angrist and Krueger (1991).
12 The 2SLS estimates and associated standard errors are, to three decimal places, identical.
13 The 9year-of-birth coefficient estimates are not quoted in Eq. 21 as they are irrelevant to the present
discussion.
14 More recently, Buckles and Hungerman (2013) find that using season-of-birth instruments can produce
inconsistent estimates across a wide array of empirical settings. In particular, later evidence indicates that
birth-quarter is in fact correlated with a number of factors which affect wages but which, because they are
typically omitted from the regression, make up part of the structural error term.
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Lettingm stand for the number of instruments examined in the sensitivity analysis,
scatterplots such as Figs. 1 and 2 are not feasible to plot for values of m greater than
two. Here m = 3. However, as noted Step 5.c(ii) of the algorithm—as defined in
Sect. 4—the sensitivity of the ρ inference can be informatively displayed by means of
a plot of the ‘empirical cumulative distribution function,’ here abbreviated to ‘ECDF.’
This is a plot of the proportion of the generated instrument-error correlationm-vectors
for which the null hypothesis (Ho :ρ = 0) can no longer be rejected at some specified
level and for which the length r of the implied instrument-error correlationm-vector is
less than a given value.15 The height of this plot first exceeds zero as r rises above rmin,
its height reaches 0.01 at r equal to r.01, its height reaches 0.05 at r equal to r.05, and
so forth. Alternatively, one can just tabulate the values of rmin, r.01, r.05, r.10, and r.20.
The sensitivity results for the Bound et al. (1995) model inference on Ho :ρ = 0.0 are
displayed in both of these ways below, using Mrep equal to 50, 000 and considering
the inference result to be ‘overturned’ in any case for which Ho :ρ = 0.0 is no longer
rejected at the 5% level.16

Figure 3 displays the empirical cumulative distribution function plot for m equal
to 3, corresponding to a simultaneous analysis of all three of the quarter-of-birth
instruments used in Bound et al. (1995). This plot displays an empirical cumulative
distribution function which rises quite sharply for very small values of the instrument-
error correlation length. Evidently, the Angrist–Krueger rejection of Ho :ρ = 0, with
the consequent conclusion that the number of years of education has a significant
impact on log-wages, is quite fragile with respect to minor flaws in any of these three
quarter-of-birth instruments.

Results for rmin, r.01, r.05, r.10, and r.20 are given in Table 1 for both the m = 3
analysis plotted in Fig. 3 and for each instrument individually, assuming that the
remaining two instruments are valid. In particular, results are tabulated which analyze
the sensitivity of the inference on Ho :ρ = 0.0 with respect to possible flaws in each of
the three instruments in Bound et al. (1995) separately and the ‘All 3’ column tabulates
the results simultaneously allowing for possible flaws in all three instruments.

Table 1 follows Angrist and Krueger’s original nomenclature for the instruments:
The ‘Qtr4’ instrument, for example, is the dummy variable for men born in the 4th
quarter of any year. The table row marked ‘min t 1st stage’ gives the magnitude of the
estimated t-ratio for this instrument in the first-stage regression model of an ordinary
2SLS estimate of Eq. 20; the ‘All 3’ column of the row gives the minimum magnitude
for this t-ratio over the corresponding group of instruments. These estimated t-ratios
are substantial: The first-stage F-statistic for these three instruments is substantial in
this Bound et al. (1995) reformulation of the model.

So as to put these instrument-error correlation statistics from the sensitivity analysis
in perspective, the table row marked ‘sup corr’ tabulates the supremum of the mag-
nitudes of the sample correlations between each instrument in the group considered

15 The length ‘r ’ is defined in Step 4 of the algorithm, as defined in Sect. 4; r.01, r.05, r.10, and r.20 are
defined in Step 5.b.
16 Setting Mrep = 50, 000 is ordinarily sufficient to make rmin stable to two decimal places with respect
to re-running the analysis with a different initial seed for the random number generation in Step 1 of the
sensitivity analysis algorithm, as outlined in Sect. 4.
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Fig. 3 Empirical cumulative distribution function for the sensitivity analysis of the Bound et al. (1995)
inference on Ho : ρ = 0.0 with respect to the three quarter-of-birth instruments. The dotted vertical line
marks the minimum length instrument-error correlation vector for which Ho is no longer rejected at the
5% level

Table 1 Sensitivity analysis results on Ho :ρ = 0.0 in the Bound et al. (1995) model (Eq. 20)

Instrument Qtr2 Qtr3 Qtr4 All 3

min t 1st stage 3.479 7.065 9.136 3.479

rmin 0.013 0.006 0.005 0.009

r0.01 0.013 0.007 0.005 0.023

r0.05 0.014 0.007 0.005 0.049

r0.10 0.015 0.007 0.006 0.073

r0.20 0.016 0.008 0.006 0.104

sup corr† 0.013 0.006 0.005 0.009

inf corr 0.013 0.006 0.005 −0.002

† The value of ‘sup corr’ for each column is the supremum of the sample correlations between all of
the instruments analyzed and all of the endogenous explanatory variables in the model; there is only
one endogenous explanatory variable (Ei ) in the Angrist–Krueger model. The value of ‘inf corr’ is the
corresponding infimum; this is, of course, equal to the supremum for columns in which only one instrument
is analyzed

and the endogenous explanatory variable (Ei ) in the model; the table row marked ‘inf
corr’ tabulates the analogous infima.

Table 1 bears much the same interpretation as the ECDF plot in Fig. 3, but quanti-
fies the results more precisely. In particular, it indicates that the Bound et al. (1995)
inference rejecting Ho : ρ = 0.0 is very sensitive to small instrument-error flaws: A
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correlation of just 0.01 is sufficient to overturn the rejection of this null hypothesis
at the 5% level. Thus—without making any further assumptions about the original
Angrist–Krueger model (as re-estimated using the Bound et al. (1995) instrument set)
and without evaluating the criticisms of their instruments made by Bound and Jaeger
(1996) and others—our sensitivity analysis results clearly indicate that the Angrist–
Krueger inference result with respect to Ho : ρ = 0.0 is ‘fragile’ with respect to
possible flaws in their instruments.

These sensitivity analysis results are also potentially informative as to which par-
ticular instruments contribute most heavily to whatever fragility is found. The rmin
entries in Table 1 do not vary much across the different sets of instruments analyzed.
But a better way to address this issue is to examine the components of the minimum
length m-vector (ray) of instrument-error correlations to the ‘No Longer Rejecting’
set.

In the analysis here, we find that this vector is

(Qtr2,Qtr3,Qtr4) = (−0.002,−0.001, 0.009). (22)

The fact that all three of these correlation components are quite small in magni-
tude echoes the conclusion reached above: An instrument-error correlation need only
exceed around 0.01 in magnitude in order to overturn the original Angrist–Krueger
inference. This vector allows us to go a bit further than that, however, and note that the
Angrist–Krueger inference is a bit less sensitive to (‘fragile with respect to’) flaws in
‘Qtr2’ and ‘Qtr4’ than to flaws in ‘Qtr3’, for which the vector component is notably
larger, albeit still tiny. Were these three instruments distinctly sourced, this result
would suggest that the instrument ‘Qtr3’ might merit more scrutiny than the other
instruments, and one might in that case conclude that the additional risk of parameter
estimator inconsistency (due to possible deficiencies in the validity of these particular
instruments) is not worth the additional estimation precision their use provides. These
three components do not differ all that much in the present case, however. Moreover,
in the Angrist–Krueger model setting, all of these instruments are conceptually on
an equal footing. Consequently, the most appropriate conclusion to draw from this
estimated vector in this case is that the inference with respect to Ho :ρ = 0.0 is fragile
with respect to all three of these instruments.

6 Concluding remarks

This paper has proposed a feasible sensitivity analysis with regard to the exogeneity
(i.e., instrumental variable validity) assumption made when IV regression is used to
confront endogeneity in econometric models. Given that it is impossible to directly
test for such instrumental flaws, our sensitivity analysis algorithm—in the spirit of
Leamer (1983)—improves on existing methods in several ways. In particular, the
proposed procedure features the following advantages:

1. It does not require any additional assumptions regarding either the underlying
model or the size of the instrumental flaws. In particular, these flaws are not
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assumed to be either small or (for some bizarre reason) diminishing with the
sample length, as in methods based on ‘local-to-zero’ asymptotics.

2. It is computationally straightforward and efficient; therefore it is feasible to imple-
ment it in actual applied work with large data sets and/or a substantial number of
instruments.

3. It is applicable in any setting where one is estimating a parametric model using
instrumental variables.

The sensitivity analysis proposed here (to flawed instruments in the endogenous
explanatory variable setting) is an important contribution to the ‘applied econometrics
toolkit’, because this predicament is so common as to be an endemic feature of empir-
ical economic analysis. For example, Keane (2010a, p. 6) notes that “…exogeneity
assumptions are always a priori, and there is no such thing as an ‘ideal’ instrument
that is ‘obviously’ exogenous.”

Our proposed sensitivity analysis neither eliminates nor even ameliorates such
instrumental flaws. What it does do is inform the analyst as to which model inferences
are clearly ‘robust’ to likely flaws and which are clearly ‘fragile.’ Where an inference
is fragile, then it should be interpreted with an appropriately large measure of caution.
Where it is robust, we nevertheless support Keane (2010a, b) argument that one must
still attend to the underlying economics of the model in order to properly interpret
the coefficient estimates and inferential results relating to them. In particular, if a
population coefficient does not mean what one thinks it means—e.g., because of
failure to attend to the conditioning assumptions—then the fact that one’s hypothesis
test rejection p values are robust to likely instrumental flaws is of little consolation.

Still, for those cases where the model coefficients (and null hypotheses couched
in terms of them) are well defined, it is definitely advantageous to be able to assess
whether (and which of) the empirical inferences about them are robust to likely levels
of instrumental flaws and which are fragile. A large value of the sensitivity analysis
statistic rmin defined in the algorithm described above—i.e., values of 0.30, say, and
up—pretty clearly corresponds to an inference which is fairly ‘robust’ to flaws in the
instruments; such an inference is therefore relatively credible. In contrast, a small value
of rmin—such as a value less than around 0.05, say—corresponds to an inferencewhich
is fairly ‘fragile’ with respect to flaws in the instruments; such an inference is therefore
not very credible. In less clear-cut cases, one must obviously exercise one’s own, to
some degree subjective, judgement. But—even in such an instance—the sensitivity
analysis has given one something objective to work with and at least made it clear that
this is an intermediate case.

Also, finding that a particular inference is fragile is not necessarily the end of
the story. One might well, in such an instance, strongly consider dropping one or
more of the instruments figuring most prominently in the m-vector of instrument-
error correlations corresponding to rmin: The additional estimation precision afforded
by using this instrument is likely not worth the additional fragility it engenders.17

On the other hand, if an inference is highly fragile in many or most instrument-error

17 See also Donald and Newey (2001) and Donald et al. (2009).

123



Sensitivity analysis 1171

correlation directions, then this inference is simply not as meaningful as it appears. It
is better to know that.

Note also that ‘fragility’/‘robustness’ is specific to each inference which one con-
siders. For a given model—and data set on the explanatory variables, and selection of
instruments—the sensitivity analysis can easily indicate that inferences with regard to
some null hypotheses are quite fragile and that inferences with respect to other null
hypotheses are quite robust. In either case, knowing the robustness of these particular
inferences is of empirical importance.
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